Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import Optional, Tuple | |
import torch | |
from torch import nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ..attention_processor import Attention | |
from ..embeddings import get_timestep_embedding | |
from ..modeling_utils import ModelMixin | |
class T5FilmDecoder(ModelMixin, ConfigMixin): | |
r""" | |
T5 style decoder with FiLM conditioning. | |
Args: | |
input_dims (`int`, *optional*, defaults to `128`): | |
The number of input dimensions. | |
targets_length (`int`, *optional*, defaults to `256`): | |
The length of the targets. | |
d_model (`int`, *optional*, defaults to `768`): | |
Size of the input hidden states. | |
num_layers (`int`, *optional*, defaults to `12`): | |
The number of `DecoderLayer`'s to use. | |
num_heads (`int`, *optional*, defaults to `12`): | |
The number of attention heads to use. | |
d_kv (`int`, *optional*, defaults to `64`): | |
Size of the key-value projection vectors. | |
d_ff (`int`, *optional*, defaults to `2048`): | |
The number of dimensions in the intermediate feed-forward layer of `DecoderLayer`'s. | |
dropout_rate (`float`, *optional*, defaults to `0.1`): | |
Dropout probability. | |
""" | |
def __init__( | |
self, | |
input_dims: int = 128, | |
targets_length: int = 256, | |
max_decoder_noise_time: float = 2000.0, | |
d_model: int = 768, | |
num_layers: int = 12, | |
num_heads: int = 12, | |
d_kv: int = 64, | |
d_ff: int = 2048, | |
dropout_rate: float = 0.1, | |
): | |
super().__init__() | |
self.conditioning_emb = nn.Sequential( | |
nn.Linear(d_model, d_model * 4, bias=False), | |
nn.SiLU(), | |
nn.Linear(d_model * 4, d_model * 4, bias=False), | |
nn.SiLU(), | |
) | |
self.position_encoding = nn.Embedding(targets_length, d_model) | |
self.position_encoding.weight.requires_grad = False | |
self.continuous_inputs_projection = nn.Linear(input_dims, d_model, bias=False) | |
self.dropout = nn.Dropout(p=dropout_rate) | |
self.decoders = nn.ModuleList() | |
for lyr_num in range(num_layers): | |
# FiLM conditional T5 decoder | |
lyr = DecoderLayer(d_model=d_model, d_kv=d_kv, num_heads=num_heads, d_ff=d_ff, dropout_rate=dropout_rate) | |
self.decoders.append(lyr) | |
self.decoder_norm = T5LayerNorm(d_model) | |
self.post_dropout = nn.Dropout(p=dropout_rate) | |
self.spec_out = nn.Linear(d_model, input_dims, bias=False) | |
def encoder_decoder_mask(self, query_input: torch.Tensor, key_input: torch.Tensor) -> torch.Tensor: | |
mask = torch.mul(query_input.unsqueeze(-1), key_input.unsqueeze(-2)) | |
return mask.unsqueeze(-3) | |
def forward(self, encodings_and_masks, decoder_input_tokens, decoder_noise_time): | |
batch, _, _ = decoder_input_tokens.shape | |
assert decoder_noise_time.shape == (batch,) | |
# decoder_noise_time is in [0, 1), so rescale to expected timing range. | |
time_steps = get_timestep_embedding( | |
decoder_noise_time * self.config.max_decoder_noise_time, | |
embedding_dim=self.config.d_model, | |
max_period=self.config.max_decoder_noise_time, | |
).to(dtype=self.dtype) | |
conditioning_emb = self.conditioning_emb(time_steps).unsqueeze(1) | |
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) | |
seq_length = decoder_input_tokens.shape[1] | |
# If we want to use relative positions for audio context, we can just offset | |
# this sequence by the length of encodings_and_masks. | |
decoder_positions = torch.broadcast_to( | |
torch.arange(seq_length, device=decoder_input_tokens.device), | |
(batch, seq_length), | |
) | |
position_encodings = self.position_encoding(decoder_positions) | |
inputs = self.continuous_inputs_projection(decoder_input_tokens) | |
inputs += position_encodings | |
y = self.dropout(inputs) | |
# decoder: No padding present. | |
decoder_mask = torch.ones( | |
decoder_input_tokens.shape[:2], device=decoder_input_tokens.device, dtype=inputs.dtype | |
) | |
# Translate encoding masks to encoder-decoder masks. | |
encodings_and_encdec_masks = [(x, self.encoder_decoder_mask(decoder_mask, y)) for x, y in encodings_and_masks] | |
# cross attend style: concat encodings | |
encoded = torch.cat([x[0] for x in encodings_and_encdec_masks], dim=1) | |
encoder_decoder_mask = torch.cat([x[1] for x in encodings_and_encdec_masks], dim=-1) | |
for lyr in self.decoders: | |
y = lyr( | |
y, | |
conditioning_emb=conditioning_emb, | |
encoder_hidden_states=encoded, | |
encoder_attention_mask=encoder_decoder_mask, | |
)[0] | |
y = self.decoder_norm(y) | |
y = self.post_dropout(y) | |
spec_out = self.spec_out(y) | |
return spec_out | |
class DecoderLayer(nn.Module): | |
r""" | |
T5 decoder layer. | |
Args: | |
d_model (`int`): | |
Size of the input hidden states. | |
d_kv (`int`): | |
Size of the key-value projection vectors. | |
num_heads (`int`): | |
Number of attention heads. | |
d_ff (`int`): | |
Size of the intermediate feed-forward layer. | |
dropout_rate (`float`): | |
Dropout probability. | |
layer_norm_epsilon (`float`, *optional*, defaults to `1e-6`): | |
A small value used for numerical stability to avoid dividing by zero. | |
""" | |
def __init__( | |
self, d_model: int, d_kv: int, num_heads: int, d_ff: int, dropout_rate: float, layer_norm_epsilon: float = 1e-6 | |
): | |
super().__init__() | |
self.layer = nn.ModuleList() | |
# cond self attention: layer 0 | |
self.layer.append( | |
T5LayerSelfAttentionCond(d_model=d_model, d_kv=d_kv, num_heads=num_heads, dropout_rate=dropout_rate) | |
) | |
# cross attention: layer 1 | |
self.layer.append( | |
T5LayerCrossAttention( | |
d_model=d_model, | |
d_kv=d_kv, | |
num_heads=num_heads, | |
dropout_rate=dropout_rate, | |
layer_norm_epsilon=layer_norm_epsilon, | |
) | |
) | |
# Film Cond MLP + dropout: last layer | |
self.layer.append( | |
T5LayerFFCond(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate, layer_norm_epsilon=layer_norm_epsilon) | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
conditioning_emb: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
encoder_decoder_position_bias=None, | |
) -> Tuple[torch.Tensor]: | |
hidden_states = self.layer[0]( | |
hidden_states, | |
conditioning_emb=conditioning_emb, | |
attention_mask=attention_mask, | |
) | |
if encoder_hidden_states is not None: | |
encoder_extended_attention_mask = torch.where(encoder_attention_mask > 0, 0, -1e10).to( | |
encoder_hidden_states.dtype | |
) | |
hidden_states = self.layer[1]( | |
hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_extended_attention_mask, | |
) | |
# Apply Film Conditional Feed Forward layer | |
hidden_states = self.layer[-1](hidden_states, conditioning_emb) | |
return (hidden_states,) | |
class T5LayerSelfAttentionCond(nn.Module): | |
r""" | |
T5 style self-attention layer with conditioning. | |
Args: | |
d_model (`int`): | |
Size of the input hidden states. | |
d_kv (`int`): | |
Size of the key-value projection vectors. | |
num_heads (`int`): | |
Number of attention heads. | |
dropout_rate (`float`): | |
Dropout probability. | |
""" | |
def __init__(self, d_model: int, d_kv: int, num_heads: int, dropout_rate: float): | |
super().__init__() | |
self.layer_norm = T5LayerNorm(d_model) | |
self.FiLMLayer = T5FiLMLayer(in_features=d_model * 4, out_features=d_model) | |
self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False) | |
self.dropout = nn.Dropout(dropout_rate) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
conditioning_emb: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
# pre_self_attention_layer_norm | |
normed_hidden_states = self.layer_norm(hidden_states) | |
if conditioning_emb is not None: | |
normed_hidden_states = self.FiLMLayer(normed_hidden_states, conditioning_emb) | |
# Self-attention block | |
attention_output = self.attention(normed_hidden_states) | |
hidden_states = hidden_states + self.dropout(attention_output) | |
return hidden_states | |
class T5LayerCrossAttention(nn.Module): | |
r""" | |
T5 style cross-attention layer. | |
Args: | |
d_model (`int`): | |
Size of the input hidden states. | |
d_kv (`int`): | |
Size of the key-value projection vectors. | |
num_heads (`int`): | |
Number of attention heads. | |
dropout_rate (`float`): | |
Dropout probability. | |
layer_norm_epsilon (`float`): | |
A small value used for numerical stability to avoid dividing by zero. | |
""" | |
def __init__(self, d_model: int, d_kv: int, num_heads: int, dropout_rate: float, layer_norm_epsilon: float): | |
super().__init__() | |
self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False) | |
self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon) | |
self.dropout = nn.Dropout(dropout_rate) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
normed_hidden_states = self.layer_norm(hidden_states) | |
attention_output = self.attention( | |
normed_hidden_states, | |
encoder_hidden_states=key_value_states, | |
attention_mask=attention_mask.squeeze(1), | |
) | |
layer_output = hidden_states + self.dropout(attention_output) | |
return layer_output | |
class T5LayerFFCond(nn.Module): | |
r""" | |
T5 style feed-forward conditional layer. | |
Args: | |
d_model (`int`): | |
Size of the input hidden states. | |
d_ff (`int`): | |
Size of the intermediate feed-forward layer. | |
dropout_rate (`float`): | |
Dropout probability. | |
layer_norm_epsilon (`float`): | |
A small value used for numerical stability to avoid dividing by zero. | |
""" | |
def __init__(self, d_model: int, d_ff: int, dropout_rate: float, layer_norm_epsilon: float): | |
super().__init__() | |
self.DenseReluDense = T5DenseGatedActDense(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate) | |
self.film = T5FiLMLayer(in_features=d_model * 4, out_features=d_model) | |
self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon) | |
self.dropout = nn.Dropout(dropout_rate) | |
def forward(self, hidden_states: torch.Tensor, conditioning_emb: Optional[torch.Tensor] = None) -> torch.Tensor: | |
forwarded_states = self.layer_norm(hidden_states) | |
if conditioning_emb is not None: | |
forwarded_states = self.film(forwarded_states, conditioning_emb) | |
forwarded_states = self.DenseReluDense(forwarded_states) | |
hidden_states = hidden_states + self.dropout(forwarded_states) | |
return hidden_states | |
class T5DenseGatedActDense(nn.Module): | |
r""" | |
T5 style feed-forward layer with gated activations and dropout. | |
Args: | |
d_model (`int`): | |
Size of the input hidden states. | |
d_ff (`int`): | |
Size of the intermediate feed-forward layer. | |
dropout_rate (`float`): | |
Dropout probability. | |
""" | |
def __init__(self, d_model: int, d_ff: int, dropout_rate: float): | |
super().__init__() | |
self.wi_0 = nn.Linear(d_model, d_ff, bias=False) | |
self.wi_1 = nn.Linear(d_model, d_ff, bias=False) | |
self.wo = nn.Linear(d_ff, d_model, bias=False) | |
self.dropout = nn.Dropout(dropout_rate) | |
self.act = NewGELUActivation() | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_gelu = self.act(self.wi_0(hidden_states)) | |
hidden_linear = self.wi_1(hidden_states) | |
hidden_states = hidden_gelu * hidden_linear | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.wo(hidden_states) | |
return hidden_states | |
class T5LayerNorm(nn.Module): | |
r""" | |
T5 style layer normalization module. | |
Args: | |
hidden_size (`int`): | |
Size of the input hidden states. | |
eps (`float`, `optional`, defaults to `1e-6`): | |
A small value used for numerical stability to avoid dividing by zero. | |
""" | |
def __init__(self, hidden_size: int, eps: float = 1e-6): | |
""" | |
Construct a layernorm module in the T5 style. No bias and no subtraction of mean. | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean | |
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated | |
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for | |
# half-precision inputs is done in fp32 | |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
# convert into half-precision if necessary | |
if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
hidden_states = hidden_states.to(self.weight.dtype) | |
return self.weight * hidden_states | |
class NewGELUActivation(nn.Module): | |
""" | |
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see | |
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415 | |
""" | |
def forward(self, input: torch.Tensor) -> torch.Tensor: | |
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0)))) | |
class T5FiLMLayer(nn.Module): | |
""" | |
T5 style FiLM Layer. | |
Args: | |
in_features (`int`): | |
Number of input features. | |
out_features (`int`): | |
Number of output features. | |
""" | |
def __init__(self, in_features: int, out_features: int): | |
super().__init__() | |
self.scale_bias = nn.Linear(in_features, out_features * 2, bias=False) | |
def forward(self, x: torch.Tensor, conditioning_emb: torch.Tensor) -> torch.Tensor: | |
emb = self.scale_bias(conditioning_emb) | |
scale, shift = torch.chunk(emb, 2, -1) | |
x = x * (1 + scale) + shift | |
return x | |