OAOA's picture
first commit
bfa59ab
raw
history blame
29 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ...configuration_utils import LegacyConfigMixin, register_to_config
from ...utils import deprecate, is_torch_version, logging
from ..attention import BasicTransformerBlock
from ..embeddings import ImagePositionalEmbeddings, PatchEmbed, PixArtAlphaTextProjection
from ..modeling_outputs import Transformer2DModelOutput
from ..modeling_utils import LegacyModelMixin
from ..normalization import AdaLayerNormSingle
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class Transformer2DModelOutput(Transformer2DModelOutput):
def __init__(self, *args, **kwargs):
deprecation_message = "Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead."
deprecate("Transformer2DModelOutput", "1.0.0", deprecation_message)
super().__init__(*args, **kwargs)
class Transformer2DModel(LegacyModelMixin, LegacyConfigMixin):
"""
A 2D Transformer model for image-like data.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
This is fixed during training since it is used to learn a number of position embeddings.
num_vector_embeds (`int`, *optional*):
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
num_embeds_ada_norm ( `int`, *optional*):
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
added to the hidden states.
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the `TransformerBlocks` attention should contain a bias parameter.
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["BasicTransformerBlock"]
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
num_vector_embeds: Optional[int] = None,
patch_size: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
attention_type: str = "default",
caption_channels: int = None,
interpolation_scale: float = None,
use_additional_conditions: Optional[bool] = None,
):
super().__init__()
# Validate inputs.
if patch_size is not None:
if norm_type not in ["ada_norm", "ada_norm_zero", "ada_norm_single"]:
raise NotImplementedError(
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
)
elif norm_type in ["ada_norm", "ada_norm_zero"] and num_embeds_ada_norm is None:
raise ValueError(
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
)
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
# Define whether input is continuous or discrete depending on configuration
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
self.is_input_vectorized = num_vector_embeds is not None
self.is_input_patches = in_channels is not None and patch_size is not None
if self.is_input_continuous and self.is_input_vectorized:
raise ValueError(
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
" sure that either `in_channels` or `num_vector_embeds` is None."
)
elif self.is_input_vectorized and self.is_input_patches:
raise ValueError(
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
" sure that either `num_vector_embeds` or `num_patches` is None."
)
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
raise ValueError(
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
)
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
deprecation_message = (
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
" incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config."
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
)
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
norm_type = "ada_norm"
# Set some common variables used across the board.
self.use_linear_projection = use_linear_projection
self.interpolation_scale = interpolation_scale
self.caption_channels = caption_channels
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.gradient_checkpointing = False
if use_additional_conditions is None:
if norm_type == "ada_norm_single" and sample_size == 128:
use_additional_conditions = True
else:
use_additional_conditions = False
self.use_additional_conditions = use_additional_conditions
# 2. Initialize the right blocks.
# These functions follow a common structure:
# a. Initialize the input blocks. b. Initialize the transformer blocks.
# c. Initialize the output blocks and other projection blocks when necessary.
if self.is_input_continuous:
self._init_continuous_input(norm_type=norm_type)
elif self.is_input_vectorized:
self._init_vectorized_inputs(norm_type=norm_type)
elif self.is_input_patches:
self._init_patched_inputs(norm_type=norm_type)
def _init_continuous_input(self, norm_type):
self.norm = torch.nn.GroupNorm(
num_groups=self.config.norm_num_groups, num_channels=self.in_channels, eps=1e-6, affine=True
)
if self.use_linear_projection:
self.proj_in = torch.nn.Linear(self.in_channels, self.inner_dim)
else:
self.proj_in = torch.nn.Conv2d(self.in_channels, self.inner_dim, kernel_size=1, stride=1, padding=0)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
self.config.num_attention_heads,
self.config.attention_head_dim,
dropout=self.config.dropout,
cross_attention_dim=self.config.cross_attention_dim,
activation_fn=self.config.activation_fn,
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
attention_bias=self.config.attention_bias,
only_cross_attention=self.config.only_cross_attention,
double_self_attention=self.config.double_self_attention,
upcast_attention=self.config.upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=self.config.norm_elementwise_affine,
norm_eps=self.config.norm_eps,
attention_type=self.config.attention_type,
)
for _ in range(self.config.num_layers)
]
)
if self.use_linear_projection:
self.proj_out = torch.nn.Linear(self.inner_dim, self.out_channels)
else:
self.proj_out = torch.nn.Conv2d(self.inner_dim, self.out_channels, kernel_size=1, stride=1, padding=0)
def _init_vectorized_inputs(self, norm_type):
assert self.config.sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
assert (
self.config.num_vector_embeds is not None
), "Transformer2DModel over discrete input must provide num_embed"
self.height = self.config.sample_size
self.width = self.config.sample_size
self.num_latent_pixels = self.height * self.width
self.latent_image_embedding = ImagePositionalEmbeddings(
num_embed=self.config.num_vector_embeds, embed_dim=self.inner_dim, height=self.height, width=self.width
)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
self.config.num_attention_heads,
self.config.attention_head_dim,
dropout=self.config.dropout,
cross_attention_dim=self.config.cross_attention_dim,
activation_fn=self.config.activation_fn,
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
attention_bias=self.config.attention_bias,
only_cross_attention=self.config.only_cross_attention,
double_self_attention=self.config.double_self_attention,
upcast_attention=self.config.upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=self.config.norm_elementwise_affine,
norm_eps=self.config.norm_eps,
attention_type=self.config.attention_type,
)
for _ in range(self.config.num_layers)
]
)
self.norm_out = nn.LayerNorm(self.inner_dim)
self.out = nn.Linear(self.inner_dim, self.config.num_vector_embeds - 1)
def _init_patched_inputs(self, norm_type):
assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
self.height = self.config.sample_size
self.width = self.config.sample_size
self.patch_size = self.config.patch_size
interpolation_scale = (
self.config.interpolation_scale
if self.config.interpolation_scale is not None
else max(self.config.sample_size // 64, 1)
)
self.pos_embed = PatchEmbed(
height=self.config.sample_size,
width=self.config.sample_size,
patch_size=self.config.patch_size,
in_channels=self.in_channels,
embed_dim=self.inner_dim,
interpolation_scale=interpolation_scale,
)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
self.config.num_attention_heads,
self.config.attention_head_dim,
dropout=self.config.dropout,
cross_attention_dim=self.config.cross_attention_dim,
activation_fn=self.config.activation_fn,
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
attention_bias=self.config.attention_bias,
only_cross_attention=self.config.only_cross_attention,
double_self_attention=self.config.double_self_attention,
upcast_attention=self.config.upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=self.config.norm_elementwise_affine,
norm_eps=self.config.norm_eps,
attention_type=self.config.attention_type,
)
for _ in range(self.config.num_layers)
]
)
if self.config.norm_type != "ada_norm_single":
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
self.proj_out_2 = nn.Linear(
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
)
elif self.config.norm_type == "ada_norm_single":
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
self.proj_out = nn.Linear(
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
)
# PixArt-Alpha blocks.
self.adaln_single = None
if self.config.norm_type == "ada_norm_single":
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
# additional conditions until we find better name
self.adaln_single = AdaLayerNormSingle(
self.inner_dim, use_additional_conditions=self.use_additional_conditions
)
self.caption_projection = None
if self.caption_channels is not None:
self.caption_projection = PixArtAlphaTextProjection(
in_features=self.caption_channels, hidden_size=self.inner_dim
)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
class_labels: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
"""
The [`Transformer2DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformers.transformer_2d.Transformer2DModelOutput`] is returned,
otherwise a `tuple` where the first element is the sample tensor.
"""
if cross_attention_kwargs is not None:
if cross_attention_kwargs.get("scale", None) is not None:
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. Input
if self.is_input_continuous:
batch_size, _, height, width = hidden_states.shape
residual = hidden_states
hidden_states, inner_dim = self._operate_on_continuous_inputs(hidden_states)
elif self.is_input_vectorized:
hidden_states = self.latent_image_embedding(hidden_states)
elif self.is_input_patches:
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
hidden_states, encoder_hidden_states, timestep, embedded_timestep = self._operate_on_patched_inputs(
hidden_states, encoder_hidden_states, timestep, added_cond_kwargs
)
# 2. Blocks
for block in self.transformer_blocks:
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
cross_attention_kwargs,
class_labels,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=class_labels,
)
# 3. Output
if self.is_input_continuous:
output = self._get_output_for_continuous_inputs(
hidden_states=hidden_states,
residual=residual,
batch_size=batch_size,
height=height,
width=width,
inner_dim=inner_dim,
)
elif self.is_input_vectorized:
output = self._get_output_for_vectorized_inputs(hidden_states)
elif self.is_input_patches:
output = self._get_output_for_patched_inputs(
hidden_states=hidden_states,
timestep=timestep,
class_labels=class_labels,
embedded_timestep=embedded_timestep,
height=height,
width=width,
)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
def _operate_on_continuous_inputs(self, hidden_states):
batch, _, height, width = hidden_states.shape
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
hidden_states = self.proj_in(hidden_states)
return hidden_states, inner_dim
def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs):
batch_size = hidden_states.shape[0]
hidden_states = self.pos_embed(hidden_states)
embedded_timestep = None
if self.adaln_single is not None:
if self.use_additional_conditions and added_cond_kwargs is None:
raise ValueError(
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
)
timestep, embedded_timestep = self.adaln_single(
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
)
if self.caption_projection is not None:
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
return hidden_states, encoder_hidden_states, timestep, embedded_timestep
def _get_output_for_continuous_inputs(self, hidden_states, residual, batch_size, height, width, inner_dim):
if not self.use_linear_projection:
hidden_states = (
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
)
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
)
output = hidden_states + residual
return output
def _get_output_for_vectorized_inputs(self, hidden_states):
hidden_states = self.norm_out(hidden_states)
logits = self.out(hidden_states)
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
logits = logits.permute(0, 2, 1)
# log(p(x_0))
output = F.log_softmax(logits.double(), dim=1).float()
return output
def _get_output_for_patched_inputs(
self, hidden_states, timestep, class_labels, embedded_timestep, height=None, width=None
):
if self.config.norm_type != "ada_norm_single":
conditioning = self.transformer_blocks[0].norm1.emb(
timestep, class_labels, hidden_dtype=hidden_states.dtype
)
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
hidden_states = self.proj_out_2(hidden_states)
elif self.config.norm_type == "ada_norm_single":
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.squeeze(1)
# unpatchify
if self.adaln_single is None:
height = width = int(hidden_states.shape[1] ** 0.5)
hidden_states = hidden_states.reshape(
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
)
return output