Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Any, Dict, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from ...configuration_utils import ConfigMixin, FrozenDict, register_to_config | |
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin, UNet2DConditionLoadersMixin | |
from ...utils import BaseOutput, deprecate, is_torch_version, logging | |
from ...utils.torch_utils import apply_freeu | |
from ..attention import BasicTransformerBlock | |
from ..attention_processor import ( | |
ADDED_KV_ATTENTION_PROCESSORS, | |
CROSS_ATTENTION_PROCESSORS, | |
Attention, | |
AttentionProcessor, | |
AttnAddedKVProcessor, | |
AttnProcessor, | |
AttnProcessor2_0, | |
FusedAttnProcessor2_0, | |
IPAdapterAttnProcessor, | |
IPAdapterAttnProcessor2_0, | |
) | |
from ..embeddings import TimestepEmbedding, Timesteps | |
from ..modeling_utils import ModelMixin | |
from ..resnet import Downsample2D, ResnetBlock2D, Upsample2D | |
from ..transformers.dual_transformer_2d import DualTransformer2DModel | |
from ..transformers.transformer_2d import Transformer2DModel | |
from .unet_2d_blocks import UNetMidBlock2DCrossAttn | |
from .unet_2d_condition import UNet2DConditionModel | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class UNetMotionOutput(BaseOutput): | |
""" | |
The output of [`UNetMotionOutput`]. | |
Args: | |
sample (`torch.Tensor` of shape `(batch_size, num_channels, num_frames, height, width)`): | |
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
""" | |
sample: torch.Tensor | |
class AnimateDiffTransformer3D(nn.Module): | |
""" | |
A Transformer model for video-like data. | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
in_channels (`int`, *optional*): | |
The number of channels in the input and output (specify if the input is **continuous**). | |
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
attention_bias (`bool`, *optional*): | |
Configure if the `TransformerBlock` attention should contain a bias parameter. | |
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | |
This is fixed during training since it is used to learn a number of position embeddings. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): | |
Activation function to use in feed-forward. See `diffusers.models.activations.get_activation` for supported | |
activation functions. | |
norm_elementwise_affine (`bool`, *optional*): | |
Configure if the `TransformerBlock` should use learnable elementwise affine parameters for normalization. | |
double_self_attention (`bool`, *optional*): | |
Configure if each `TransformerBlock` should contain two self-attention layers. | |
positional_embeddings: (`str`, *optional*): | |
The type of positional embeddings to apply to the sequence input before passing use. | |
num_positional_embeddings: (`int`, *optional*): | |
The maximum length of the sequence over which to apply positional embeddings. | |
""" | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
out_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
sample_size: Optional[int] = None, | |
activation_fn: str = "geglu", | |
norm_elementwise_affine: bool = True, | |
double_self_attention: bool = True, | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
): | |
super().__init__() | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
self.in_channels = in_channels | |
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
# 3. Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
double_self_attention=double_self_attention, | |
norm_elementwise_affine=norm_elementwise_affine, | |
positional_embeddings=positional_embeddings, | |
num_positional_embeddings=num_positional_embeddings, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.proj_out = nn.Linear(inner_dim, in_channels) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.LongTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
num_frames: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
) -> torch.Tensor: | |
""" | |
The [`AnimateDiffTransformer3D`] forward method. | |
Args: | |
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous): | |
Input hidden_states. | |
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
timestep ( `torch.LongTensor`, *optional*): | |
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
`AdaLayerZeroNorm`. | |
num_frames (`int`, *optional*, defaults to 1): | |
The number of frames to be processed per batch. This is used to reshape the hidden states. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
Returns: | |
torch.Tensor: | |
The output tensor. | |
""" | |
# 1. Input | |
batch_frames, channel, height, width = hidden_states.shape | |
batch_size = batch_frames // num_frames | |
residual = hidden_states | |
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width) | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4) | |
hidden_states = self.norm(hidden_states) | |
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel) | |
hidden_states = self.proj_in(hidden_states) | |
# 2. Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
timestep=timestep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
class_labels=class_labels, | |
) | |
# 3. Output | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = ( | |
hidden_states[None, None, :] | |
.reshape(batch_size, height, width, num_frames, channel) | |
.permute(0, 3, 4, 1, 2) | |
.contiguous() | |
) | |
hidden_states = hidden_states.reshape(batch_frames, channel, height, width) | |
output = hidden_states + residual | |
return output | |
class DownBlockMotion(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_downsample: bool = True, | |
downsample_padding: int = 1, | |
temporal_num_attention_heads: Union[int, Tuple[int]] = 1, | |
temporal_cross_attention_dim: Optional[int] = None, | |
temporal_max_seq_length: int = 32, | |
temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
temporal_double_self_attention: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
motion_modules = [] | |
# support for variable transformer layers per temporal block | |
if isinstance(temporal_transformer_layers_per_block, int): | |
temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers | |
elif len(temporal_transformer_layers_per_block) != num_layers: | |
raise ValueError( | |
f"`temporal_transformer_layers_per_block` must be an integer or a tuple of integers of length {num_layers}" | |
) | |
# support for variable number of attention head per temporal layers | |
if isinstance(temporal_num_attention_heads, int): | |
temporal_num_attention_heads = (temporal_num_attention_heads,) * num_layers | |
elif len(temporal_num_attention_heads) != num_layers: | |
raise ValueError( | |
f"`temporal_num_attention_heads` must be an integer or a tuple of integers of length {num_layers}" | |
) | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
motion_modules.append( | |
AnimateDiffTransformer3D( | |
num_attention_heads=temporal_num_attention_heads[i], | |
in_channels=out_channels, | |
num_layers=temporal_transformer_layers_per_block[i], | |
norm_num_groups=resnet_groups, | |
cross_attention_dim=temporal_cross_attention_dim, | |
attention_bias=False, | |
activation_fn="geglu", | |
positional_embeddings="sinusoidal", | |
num_positional_embeddings=temporal_max_seq_length, | |
attention_head_dim=out_channels // temporal_num_attention_heads[i], | |
double_self_attention=temporal_double_self_attention, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.motion_modules = nn.ModuleList(motion_modules) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
padding=downsample_padding, | |
name="op", | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
num_frames: int = 1, | |
*args, | |
**kwargs, | |
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
deprecate("scale", "1.0.0", deprecation_message) | |
output_states = () | |
blocks = zip(self.resnets, self.motion_modules) | |
for resnet, motion_module in blocks: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = motion_module(hidden_states, num_frames=num_frames) | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class CrossAttnDownBlockMotion(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
output_scale_factor: float = 1.0, | |
downsample_padding: int = 1, | |
add_downsample: bool = True, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
attention_type: str = "default", | |
temporal_cross_attention_dim: Optional[int] = None, | |
temporal_num_attention_heads: int = 8, | |
temporal_max_seq_length: int = 32, | |
temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
temporal_double_self_attention: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
motion_modules = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
# support for variable transformer layers per block | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = (transformer_layers_per_block,) * num_layers | |
elif len(transformer_layers_per_block) != num_layers: | |
raise ValueError( | |
f"transformer_layers_per_block must be an integer or a list of integers of length {num_layers}" | |
) | |
# support for variable transformer layers per temporal block | |
if isinstance(temporal_transformer_layers_per_block, int): | |
temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers | |
elif len(temporal_transformer_layers_per_block) != num_layers: | |
raise ValueError( | |
f"temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}" | |
) | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if not dual_cross_attention: | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
attention_type=attention_type, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
motion_modules.append( | |
AnimateDiffTransformer3D( | |
num_attention_heads=temporal_num_attention_heads, | |
in_channels=out_channels, | |
num_layers=temporal_transformer_layers_per_block[i], | |
norm_num_groups=resnet_groups, | |
cross_attention_dim=temporal_cross_attention_dim, | |
attention_bias=False, | |
activation_fn="geglu", | |
positional_embeddings="sinusoidal", | |
num_positional_embeddings=temporal_max_seq_length, | |
attention_head_dim=out_channels // temporal_num_attention_heads, | |
double_self_attention=temporal_double_self_attention, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.motion_modules = nn.ModuleList(motion_modules) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, | |
use_conv=True, | |
out_channels=out_channels, | |
padding=downsample_padding, | |
name="op", | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
num_frames: int = 1, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
additional_residuals: Optional[torch.Tensor] = None, | |
): | |
if cross_attention_kwargs is not None: | |
if cross_attention_kwargs.get("scale", None) is not None: | |
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") | |
output_states = () | |
blocks = list(zip(self.resnets, self.attentions, self.motion_modules)) | |
for i, (resnet, attn, motion_module) in enumerate(blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
hidden_states = motion_module( | |
hidden_states, | |
num_frames=num_frames, | |
) | |
# apply additional residuals to the output of the last pair of resnet and attention blocks | |
if i == len(blocks) - 1 and additional_residuals is not None: | |
hidden_states = hidden_states + additional_residuals | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class CrossAttnUpBlockMotion(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
cross_attention_dim: int = 1280, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
attention_type: str = "default", | |
temporal_cross_attention_dim: Optional[int] = None, | |
temporal_num_attention_heads: int = 8, | |
temporal_max_seq_length: int = 32, | |
temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
motion_modules = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
# support for variable transformer layers per block | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = (transformer_layers_per_block,) * num_layers | |
elif len(transformer_layers_per_block) != num_layers: | |
raise ValueError( | |
f"transformer_layers_per_block must be an integer or a list of integers of length {num_layers}, got {len(transformer_layers_per_block)}" | |
) | |
# support for variable transformer layers per temporal block | |
if isinstance(temporal_transformer_layers_per_block, int): | |
temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers | |
elif len(temporal_transformer_layers_per_block) != num_layers: | |
raise ValueError( | |
f"temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}, got {len(temporal_transformer_layers_per_block)}" | |
) | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if not dual_cross_attention: | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
attention_type=attention_type, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
motion_modules.append( | |
AnimateDiffTransformer3D( | |
num_attention_heads=temporal_num_attention_heads, | |
in_channels=out_channels, | |
num_layers=temporal_transformer_layers_per_block[i], | |
norm_num_groups=resnet_groups, | |
cross_attention_dim=temporal_cross_attention_dim, | |
attention_bias=False, | |
activation_fn="geglu", | |
positional_embeddings="sinusoidal", | |
num_positional_embeddings=temporal_max_seq_length, | |
attention_head_dim=out_channels // temporal_num_attention_heads, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.motion_modules = nn.ModuleList(motion_modules) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
res_hidden_states_tuple: Tuple[torch.Tensor, ...], | |
temb: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
num_frames: int = 1, | |
) -> torch.Tensor: | |
if cross_attention_kwargs is not None: | |
if cross_attention_kwargs.get("scale", None) is not None: | |
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") | |
is_freeu_enabled = ( | |
getattr(self, "s1", None) | |
and getattr(self, "s2", None) | |
and getattr(self, "b1", None) | |
and getattr(self, "b2", None) | |
) | |
blocks = zip(self.resnets, self.attentions, self.motion_modules) | |
for resnet, attn, motion_module in blocks: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
# FreeU: Only operate on the first two stages | |
if is_freeu_enabled: | |
hidden_states, res_hidden_states = apply_freeu( | |
self.resolution_idx, | |
hidden_states, | |
res_hidden_states, | |
s1=self.s1, | |
s2=self.s2, | |
b1=self.b1, | |
b2=self.b2, | |
) | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
hidden_states = motion_module( | |
hidden_states, | |
num_frames=num_frames, | |
) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
class UpBlockMotion(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
prev_output_channel: int, | |
out_channels: int, | |
temb_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_upsample: bool = True, | |
temporal_cross_attention_dim: Optional[int] = None, | |
temporal_num_attention_heads: int = 8, | |
temporal_max_seq_length: int = 32, | |
temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
): | |
super().__init__() | |
resnets = [] | |
motion_modules = [] | |
# support for variable transformer layers per temporal block | |
if isinstance(temporal_transformer_layers_per_block, int): | |
temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers | |
elif len(temporal_transformer_layers_per_block) != num_layers: | |
raise ValueError( | |
f"temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}" | |
) | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
motion_modules.append( | |
AnimateDiffTransformer3D( | |
num_attention_heads=temporal_num_attention_heads, | |
in_channels=out_channels, | |
num_layers=temporal_transformer_layers_per_block[i], | |
norm_num_groups=resnet_groups, | |
cross_attention_dim=temporal_cross_attention_dim, | |
attention_bias=False, | |
activation_fn="geglu", | |
positional_embeddings="sinusoidal", | |
num_positional_embeddings=temporal_max_seq_length, | |
attention_head_dim=out_channels // temporal_num_attention_heads, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
self.motion_modules = nn.ModuleList(motion_modules) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
res_hidden_states_tuple: Tuple[torch.Tensor, ...], | |
temb: Optional[torch.Tensor] = None, | |
upsample_size=None, | |
num_frames: int = 1, | |
*args, | |
**kwargs, | |
) -> torch.Tensor: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
deprecate("scale", "1.0.0", deprecation_message) | |
is_freeu_enabled = ( | |
getattr(self, "s1", None) | |
and getattr(self, "s2", None) | |
and getattr(self, "b1", None) | |
and getattr(self, "b2", None) | |
) | |
blocks = zip(self.resnets, self.motion_modules) | |
for resnet, motion_module in blocks: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
# FreeU: Only operate on the first two stages | |
if is_freeu_enabled: | |
hidden_states, res_hidden_states = apply_freeu( | |
self.resolution_idx, | |
hidden_states, | |
res_hidden_states, | |
s1=self.s1, | |
s2=self.s2, | |
b1=self.b1, | |
b2=self.b2, | |
) | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), hidden_states, temb | |
) | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = motion_module(hidden_states, num_frames=num_frames) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
class UNetMidBlockCrossAttnMotion(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads: int = 1, | |
output_scale_factor: float = 1.0, | |
cross_attention_dim: int = 1280, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
upcast_attention: bool = False, | |
attention_type: str = "default", | |
temporal_num_attention_heads: int = 1, | |
temporal_cross_attention_dim: Optional[int] = None, | |
temporal_max_seq_length: int = 32, | |
temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
# support for variable transformer layers per block | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = (transformer_layers_per_block,) * num_layers | |
elif len(transformer_layers_per_block) != num_layers: | |
raise ValueError( | |
f"`transformer_layers_per_block` should be an integer or a list of integers of length {num_layers}." | |
) | |
# support for variable transformer layers per temporal block | |
if isinstance(temporal_transformer_layers_per_block, int): | |
temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers | |
elif len(temporal_transformer_layers_per_block) != num_layers: | |
raise ValueError( | |
f"`temporal_transformer_layers_per_block` should be an integer or a list of integers of length {num_layers}." | |
) | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
attentions = [] | |
motion_modules = [] | |
for i in range(num_layers): | |
if not dual_cross_attention: | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
in_channels // num_attention_heads, | |
in_channels=in_channels, | |
num_layers=transformer_layers_per_block[i], | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
attention_type=attention_type, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
in_channels // num_attention_heads, | |
in_channels=in_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
motion_modules.append( | |
AnimateDiffTransformer3D( | |
num_attention_heads=temporal_num_attention_heads, | |
attention_head_dim=in_channels // temporal_num_attention_heads, | |
in_channels=in_channels, | |
num_layers=temporal_transformer_layers_per_block[i], | |
norm_num_groups=resnet_groups, | |
cross_attention_dim=temporal_cross_attention_dim, | |
attention_bias=False, | |
positional_embeddings="sinusoidal", | |
num_positional_embeddings=temporal_max_seq_length, | |
activation_fn="geglu", | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.motion_modules = nn.ModuleList(motion_modules) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
num_frames: int = 1, | |
) -> torch.Tensor: | |
if cross_attention_kwargs is not None: | |
if cross_attention_kwargs.get("scale", None) is not None: | |
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") | |
hidden_states = self.resnets[0](hidden_states, temb) | |
blocks = zip(self.attentions, self.resnets[1:], self.motion_modules) | |
for attn, resnet, motion_module in blocks: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(motion_module), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
hidden_states = motion_module( | |
hidden_states, | |
num_frames=num_frames, | |
) | |
hidden_states = resnet(hidden_states, temb) | |
return hidden_states | |
class MotionModules(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
layers_per_block: int = 2, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 8, | |
num_attention_heads: Union[int, Tuple[int]] = 8, | |
attention_bias: bool = False, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
norm_num_groups: int = 32, | |
max_seq_length: int = 32, | |
): | |
super().__init__() | |
self.motion_modules = nn.ModuleList([]) | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = (transformer_layers_per_block,) * layers_per_block | |
elif len(transformer_layers_per_block) != layers_per_block: | |
raise ValueError( | |
f"The number of transformer layers per block must match the number of layers per block, " | |
f"got {layers_per_block} and {len(transformer_layers_per_block)}" | |
) | |
for i in range(layers_per_block): | |
self.motion_modules.append( | |
AnimateDiffTransformer3D( | |
in_channels=in_channels, | |
num_layers=transformer_layers_per_block[i], | |
norm_num_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=in_channels // num_attention_heads, | |
positional_embeddings="sinusoidal", | |
num_positional_embeddings=max_seq_length, | |
) | |
) | |
class MotionAdapter(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
def __init__( | |
self, | |
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), | |
motion_layers_per_block: Union[int, Tuple[int]] = 2, | |
motion_transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]] = 1, | |
motion_mid_block_layers_per_block: int = 1, | |
motion_transformer_layers_per_mid_block: Union[int, Tuple[int]] = 1, | |
motion_num_attention_heads: Union[int, Tuple[int]] = 8, | |
motion_norm_num_groups: int = 32, | |
motion_max_seq_length: int = 32, | |
use_motion_mid_block: bool = True, | |
conv_in_channels: Optional[int] = None, | |
): | |
"""Container to store AnimateDiff Motion Modules | |
Args: | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each UNet block. | |
motion_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 2): | |
The number of motion layers per UNet block. | |
motion_transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple[int]]`, *optional*, defaults to 1): | |
The number of transformer layers to use in each motion layer in each block. | |
motion_mid_block_layers_per_block (`int`, *optional*, defaults to 1): | |
The number of motion layers in the middle UNet block. | |
motion_transformer_layers_per_mid_block (`int` or `Tuple[int]`, *optional*, defaults to 1): | |
The number of transformer layers to use in each motion layer in the middle block. | |
motion_num_attention_heads (`int` or `Tuple[int]`, *optional*, defaults to 8): | |
The number of heads to use in each attention layer of the motion module. | |
motion_norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups to use in each group normalization layer of the motion module. | |
motion_max_seq_length (`int`, *optional*, defaults to 32): | |
The maximum sequence length to use in the motion module. | |
use_motion_mid_block (`bool`, *optional*, defaults to True): | |
Whether to use a motion module in the middle of the UNet. | |
""" | |
super().__init__() | |
down_blocks = [] | |
up_blocks = [] | |
if isinstance(motion_layers_per_block, int): | |
motion_layers_per_block = (motion_layers_per_block,) * len(block_out_channels) | |
elif len(motion_layers_per_block) != len(block_out_channels): | |
raise ValueError( | |
f"The number of motion layers per block must match the number of blocks, " | |
f"got {len(block_out_channels)} and {len(motion_layers_per_block)}" | |
) | |
if isinstance(motion_transformer_layers_per_block, int): | |
motion_transformer_layers_per_block = (motion_transformer_layers_per_block,) * len(block_out_channels) | |
if isinstance(motion_transformer_layers_per_mid_block, int): | |
motion_transformer_layers_per_mid_block = ( | |
motion_transformer_layers_per_mid_block, | |
) * motion_mid_block_layers_per_block | |
elif len(motion_transformer_layers_per_mid_block) != motion_mid_block_layers_per_block: | |
raise ValueError( | |
f"The number of layers per mid block ({motion_mid_block_layers_per_block}) " | |
f"must match the length of motion_transformer_layers_per_mid_block ({len(motion_transformer_layers_per_mid_block)})" | |
) | |
if isinstance(motion_num_attention_heads, int): | |
motion_num_attention_heads = (motion_num_attention_heads,) * len(block_out_channels) | |
elif len(motion_num_attention_heads) != len(block_out_channels): | |
raise ValueError( | |
f"The length of the attention head number tuple in the motion module must match the " | |
f"number of block, got {len(motion_num_attention_heads)} and {len(block_out_channels)}" | |
) | |
if conv_in_channels: | |
# input | |
self.conv_in = nn.Conv2d(conv_in_channels, block_out_channels[0], kernel_size=3, padding=1) | |
else: | |
self.conv_in = None | |
for i, channel in enumerate(block_out_channels): | |
output_channel = block_out_channels[i] | |
down_blocks.append( | |
MotionModules( | |
in_channels=output_channel, | |
norm_num_groups=motion_norm_num_groups, | |
cross_attention_dim=None, | |
activation_fn="geglu", | |
attention_bias=False, | |
num_attention_heads=motion_num_attention_heads[i], | |
max_seq_length=motion_max_seq_length, | |
layers_per_block=motion_layers_per_block[i], | |
transformer_layers_per_block=motion_transformer_layers_per_block[i], | |
) | |
) | |
if use_motion_mid_block: | |
self.mid_block = MotionModules( | |
in_channels=block_out_channels[-1], | |
norm_num_groups=motion_norm_num_groups, | |
cross_attention_dim=None, | |
activation_fn="geglu", | |
attention_bias=False, | |
num_attention_heads=motion_num_attention_heads[-1], | |
max_seq_length=motion_max_seq_length, | |
layers_per_block=motion_mid_block_layers_per_block, | |
transformer_layers_per_block=motion_transformer_layers_per_mid_block, | |
) | |
else: | |
self.mid_block = None | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
reversed_motion_layers_per_block = list(reversed(motion_layers_per_block)) | |
reversed_motion_transformer_layers_per_block = list(reversed(motion_transformer_layers_per_block)) | |
reversed_motion_num_attention_heads = list(reversed(motion_num_attention_heads)) | |
for i, channel in enumerate(reversed_block_out_channels): | |
output_channel = reversed_block_out_channels[i] | |
up_blocks.append( | |
MotionModules( | |
in_channels=output_channel, | |
norm_num_groups=motion_norm_num_groups, | |
cross_attention_dim=None, | |
activation_fn="geglu", | |
attention_bias=False, | |
num_attention_heads=reversed_motion_num_attention_heads[i], | |
max_seq_length=motion_max_seq_length, | |
layers_per_block=reversed_motion_layers_per_block[i] + 1, | |
transformer_layers_per_block=reversed_motion_transformer_layers_per_block[i], | |
) | |
) | |
self.down_blocks = nn.ModuleList(down_blocks) | |
self.up_blocks = nn.ModuleList(up_blocks) | |
def forward(self, sample): | |
pass | |
class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): | |
r""" | |
A modified conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a | |
sample shaped output. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 4, | |
out_channels: int = 4, | |
down_block_types: Tuple[str, ...] = ( | |
"CrossAttnDownBlockMotion", | |
"CrossAttnDownBlockMotion", | |
"CrossAttnDownBlockMotion", | |
"DownBlockMotion", | |
), | |
up_block_types: Tuple[str, ...] = ( | |
"UpBlockMotion", | |
"CrossAttnUpBlockMotion", | |
"CrossAttnUpBlockMotion", | |
"CrossAttnUpBlockMotion", | |
), | |
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), | |
layers_per_block: Union[int, Tuple[int]] = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: int = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: int = 1280, | |
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, | |
reverse_transformer_layers_per_block: Optional[Union[int, Tuple[int], Tuple[Tuple]]] = None, | |
temporal_transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, | |
reverse_temporal_transformer_layers_per_block: Optional[Union[int, Tuple[int], Tuple[Tuple]]] = None, | |
transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]] = None, | |
temporal_transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]] = 1, | |
use_linear_projection: bool = False, | |
num_attention_heads: Union[int, Tuple[int, ...]] = 8, | |
motion_max_seq_length: int = 32, | |
motion_num_attention_heads: Union[int, Tuple[int, ...]] = 8, | |
reverse_motion_num_attention_heads: Optional[Union[int, Tuple[int, ...], Tuple[Tuple[int, ...], ...]]] = None, | |
use_motion_mid_block: bool = True, | |
mid_block_layers: int = 1, | |
encoder_hid_dim: Optional[int] = None, | |
encoder_hid_dim_type: Optional[str] = None, | |
addition_embed_type: Optional[str] = None, | |
addition_time_embed_dim: Optional[int] = None, | |
projection_class_embeddings_input_dim: Optional[int] = None, | |
time_cond_proj_dim: Optional[int] = None, | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
# Check inputs | |
if len(down_block_types) != len(up_block_types): | |
raise ValueError( | |
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
) | |
if len(block_out_channels) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
) | |
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | |
) | |
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None: | |
for layer_number_per_block in transformer_layers_per_block: | |
if isinstance(layer_number_per_block, list): | |
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.") | |
if ( | |
isinstance(temporal_transformer_layers_per_block, list) | |
and reverse_temporal_transformer_layers_per_block is None | |
): | |
for layer_number_per_block in temporal_transformer_layers_per_block: | |
if isinstance(layer_number_per_block, list): | |
raise ValueError( | |
"Must provide 'reverse_temporal_transformer_layers_per_block` if using asymmetrical motion module in UNet." | |
) | |
# input | |
conv_in_kernel = 3 | |
conv_out_kernel = 3 | |
conv_in_padding = (conv_in_kernel - 1) // 2 | |
self.conv_in = nn.Conv2d( | |
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | |
) | |
# time | |
time_embed_dim = block_out_channels[0] * 4 | |
self.time_proj = Timesteps(block_out_channels[0], True, 0) | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding( | |
timestep_input_dim, time_embed_dim, act_fn=act_fn, cond_proj_dim=time_cond_proj_dim | |
) | |
if encoder_hid_dim_type is None: | |
self.encoder_hid_proj = None | |
if addition_embed_type == "text_time": | |
self.add_time_proj = Timesteps(addition_time_embed_dim, True, 0) | |
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
# class embedding | |
self.down_blocks = nn.ModuleList([]) | |
self.up_blocks = nn.ModuleList([]) | |
if isinstance(num_attention_heads, int): | |
num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
if isinstance(cross_attention_dim, int): | |
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
if isinstance(layers_per_block, int): | |
layers_per_block = [layers_per_block] * len(down_block_types) | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) | |
if isinstance(reverse_transformer_layers_per_block, int): | |
reverse_transformer_layers_per_block = [reverse_transformer_layers_per_block] * len(down_block_types) | |
if isinstance(temporal_transformer_layers_per_block, int): | |
temporal_transformer_layers_per_block = [temporal_transformer_layers_per_block] * len(down_block_types) | |
if isinstance(reverse_temporal_transformer_layers_per_block, int): | |
reverse_temporal_transformer_layers_per_block = [reverse_temporal_transformer_layers_per_block] * len( | |
down_block_types | |
) | |
if isinstance(motion_num_attention_heads, int): | |
motion_num_attention_heads = (motion_num_attention_heads,) * len(down_block_types) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
if down_block_type == "CrossAttnDownBlockMotion": | |
down_block = CrossAttnDownBlockMotion( | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
num_layers=layers_per_block[i], | |
transformer_layers_per_block=transformer_layers_per_block[i], | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
num_attention_heads=num_attention_heads[i], | |
cross_attention_dim=cross_attention_dim[i], | |
downsample_padding=downsample_padding, | |
add_downsample=not is_final_block, | |
use_linear_projection=use_linear_projection, | |
temporal_num_attention_heads=motion_num_attention_heads[i], | |
temporal_max_seq_length=motion_max_seq_length, | |
temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i], | |
) | |
elif down_block_type == "DownBlockMotion": | |
down_block = DownBlockMotion( | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
num_layers=layers_per_block[i], | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
add_downsample=not is_final_block, | |
downsample_padding=downsample_padding, | |
temporal_num_attention_heads=motion_num_attention_heads[i], | |
temporal_max_seq_length=motion_max_seq_length, | |
temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i], | |
) | |
else: | |
raise ValueError( | |
"Invalid `down_block_type` encountered. Must be one of `CrossAttnDownBlockMotion` or `DownBlockMotion`" | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
if transformer_layers_per_mid_block is None: | |
transformer_layers_per_mid_block = ( | |
transformer_layers_per_block[-1] if isinstance(transformer_layers_per_block[-1], int) else 1 | |
) | |
if use_motion_mid_block: | |
self.mid_block = UNetMidBlockCrossAttnMotion( | |
in_channels=block_out_channels[-1], | |
temb_channels=time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
cross_attention_dim=cross_attention_dim[-1], | |
num_attention_heads=num_attention_heads[-1], | |
resnet_groups=norm_num_groups, | |
dual_cross_attention=False, | |
use_linear_projection=use_linear_projection, | |
num_layers=mid_block_layers, | |
temporal_num_attention_heads=motion_num_attention_heads[-1], | |
temporal_max_seq_length=motion_max_seq_length, | |
transformer_layers_per_block=transformer_layers_per_mid_block, | |
temporal_transformer_layers_per_block=temporal_transformer_layers_per_mid_block, | |
) | |
else: | |
self.mid_block = UNetMidBlock2DCrossAttn( | |
in_channels=block_out_channels[-1], | |
temb_channels=time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
cross_attention_dim=cross_attention_dim[-1], | |
num_attention_heads=num_attention_heads[-1], | |
resnet_groups=norm_num_groups, | |
dual_cross_attention=False, | |
use_linear_projection=use_linear_projection, | |
num_layers=mid_block_layers, | |
transformer_layers_per_block=transformer_layers_per_mid_block, | |
) | |
# count how many layers upsample the images | |
self.num_upsamplers = 0 | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_num_attention_heads = list(reversed(num_attention_heads)) | |
reversed_layers_per_block = list(reversed(layers_per_block)) | |
reversed_cross_attention_dim = list(reversed(cross_attention_dim)) | |
reversed_motion_num_attention_heads = list(reversed(motion_num_attention_heads)) | |
if reverse_transformer_layers_per_block is None: | |
reverse_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) | |
if reverse_temporal_transformer_layers_per_block is None: | |
reverse_temporal_transformer_layers_per_block = list(reversed(temporal_transformer_layers_per_block)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
# add upsample block for all BUT final layer | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
if up_block_type == "CrossAttnUpBlockMotion": | |
up_block = CrossAttnUpBlockMotion( | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=time_embed_dim, | |
resolution_idx=i, | |
num_layers=reversed_layers_per_block[i] + 1, | |
transformer_layers_per_block=reverse_transformer_layers_per_block[i], | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
num_attention_heads=reversed_num_attention_heads[i], | |
cross_attention_dim=reversed_cross_attention_dim[i], | |
add_upsample=add_upsample, | |
use_linear_projection=use_linear_projection, | |
temporal_num_attention_heads=reversed_motion_num_attention_heads[i], | |
temporal_max_seq_length=motion_max_seq_length, | |
temporal_transformer_layers_per_block=reverse_temporal_transformer_layers_per_block[i], | |
) | |
elif up_block_type == "UpBlockMotion": | |
up_block = UpBlockMotion( | |
in_channels=input_channel, | |
prev_output_channel=prev_output_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
resolution_idx=i, | |
num_layers=reversed_layers_per_block[i] + 1, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
add_upsample=add_upsample, | |
temporal_num_attention_heads=reversed_motion_num_attention_heads[i], | |
temporal_max_seq_length=motion_max_seq_length, | |
temporal_transformer_layers_per_block=reverse_temporal_transformer_layers_per_block[i], | |
) | |
else: | |
raise ValueError( | |
"Invalid `up_block_type` encountered. Must be one of `CrossAttnUpBlockMotion` or `UpBlockMotion`" | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
if norm_num_groups is not None: | |
self.conv_norm_out = nn.GroupNorm( | |
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps | |
) | |
self.conv_act = nn.SiLU() | |
else: | |
self.conv_norm_out = None | |
self.conv_act = None | |
conv_out_padding = (conv_out_kernel - 1) // 2 | |
self.conv_out = nn.Conv2d( | |
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding | |
) | |
def from_unet2d( | |
cls, | |
unet: UNet2DConditionModel, | |
motion_adapter: Optional[MotionAdapter] = None, | |
load_weights: bool = True, | |
): | |
has_motion_adapter = motion_adapter is not None | |
if has_motion_adapter: | |
motion_adapter.to(device=unet.device) | |
# check compatibility of number of blocks | |
if len(unet.config["down_block_types"]) != len(motion_adapter.config["block_out_channels"]): | |
raise ValueError("Incompatible Motion Adapter, got different number of blocks") | |
# check layers compatibility for each block | |
if isinstance(unet.config["layers_per_block"], int): | |
expanded_layers_per_block = [unet.config["layers_per_block"]] * len(unet.config["down_block_types"]) | |
else: | |
expanded_layers_per_block = list(unet.config["layers_per_block"]) | |
if isinstance(motion_adapter.config["motion_layers_per_block"], int): | |
expanded_adapter_layers_per_block = [motion_adapter.config["motion_layers_per_block"]] * len( | |
motion_adapter.config["block_out_channels"] | |
) | |
else: | |
expanded_adapter_layers_per_block = list(motion_adapter.config["motion_layers_per_block"]) | |
if expanded_layers_per_block != expanded_adapter_layers_per_block: | |
raise ValueError("Incompatible Motion Adapter, got different number of layers per block") | |
# based on https://github.com/guoyww/AnimateDiff/blob/895f3220c06318ea0760131ec70408b466c49333/animatediff/models/unet.py#L459 | |
config = dict(unet.config) | |
config["_class_name"] = cls.__name__ | |
down_blocks = [] | |
for down_blocks_type in config["down_block_types"]: | |
if "CrossAttn" in down_blocks_type: | |
down_blocks.append("CrossAttnDownBlockMotion") | |
else: | |
down_blocks.append("DownBlockMotion") | |
config["down_block_types"] = down_blocks | |
up_blocks = [] | |
for down_blocks_type in config["up_block_types"]: | |
if "CrossAttn" in down_blocks_type: | |
up_blocks.append("CrossAttnUpBlockMotion") | |
else: | |
up_blocks.append("UpBlockMotion") | |
config["up_block_types"] = up_blocks | |
if has_motion_adapter: | |
config["motion_num_attention_heads"] = motion_adapter.config["motion_num_attention_heads"] | |
config["motion_max_seq_length"] = motion_adapter.config["motion_max_seq_length"] | |
config["use_motion_mid_block"] = motion_adapter.config["use_motion_mid_block"] | |
config["layers_per_block"] = motion_adapter.config["motion_layers_per_block"] | |
config["temporal_transformer_layers_per_mid_block"] = motion_adapter.config[ | |
"motion_transformer_layers_per_mid_block" | |
] | |
config["temporal_transformer_layers_per_block"] = motion_adapter.config[ | |
"motion_transformer_layers_per_block" | |
] | |
config["motion_num_attention_heads"] = motion_adapter.config["motion_num_attention_heads"] | |
# For PIA UNets we need to set the number input channels to 9 | |
if motion_adapter.config["conv_in_channels"]: | |
config["in_channels"] = motion_adapter.config["conv_in_channels"] | |
# Need this for backwards compatibility with UNet2DConditionModel checkpoints | |
if not config.get("num_attention_heads"): | |
config["num_attention_heads"] = config["attention_head_dim"] | |
expected_kwargs, optional_kwargs = cls._get_signature_keys(cls) | |
config = FrozenDict({k: config.get(k) for k in config if k in expected_kwargs or k in optional_kwargs}) | |
config["_class_name"] = cls.__name__ | |
model = cls.from_config(config) | |
if not load_weights: | |
return model | |
# Logic for loading PIA UNets which allow the first 4 channels to be any UNet2DConditionModel conv_in weight | |
# while the last 5 channels must be PIA conv_in weights. | |
if has_motion_adapter and motion_adapter.config["conv_in_channels"]: | |
model.conv_in = motion_adapter.conv_in | |
updated_conv_in_weight = torch.cat( | |
[unet.conv_in.weight, motion_adapter.conv_in.weight[:, 4:, :, :]], dim=1 | |
) | |
model.conv_in.load_state_dict({"weight": updated_conv_in_weight, "bias": unet.conv_in.bias}) | |
else: | |
model.conv_in.load_state_dict(unet.conv_in.state_dict()) | |
model.time_proj.load_state_dict(unet.time_proj.state_dict()) | |
model.time_embedding.load_state_dict(unet.time_embedding.state_dict()) | |
if any( | |
isinstance(proc, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)) | |
for proc in unet.attn_processors.values() | |
): | |
attn_procs = {} | |
for name, processor in unet.attn_processors.items(): | |
if name.endswith("attn1.processor"): | |
attn_processor_class = ( | |
AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor | |
) | |
attn_procs[name] = attn_processor_class() | |
else: | |
attn_processor_class = ( | |
IPAdapterAttnProcessor2_0 | |
if hasattr(F, "scaled_dot_product_attention") | |
else IPAdapterAttnProcessor | |
) | |
attn_procs[name] = attn_processor_class( | |
hidden_size=processor.hidden_size, | |
cross_attention_dim=processor.cross_attention_dim, | |
scale=processor.scale, | |
num_tokens=processor.num_tokens, | |
) | |
for name, processor in model.attn_processors.items(): | |
if name not in attn_procs: | |
attn_procs[name] = processor.__class__() | |
model.set_attn_processor(attn_procs) | |
model.config.encoder_hid_dim_type = "ip_image_proj" | |
model.encoder_hid_proj = unet.encoder_hid_proj | |
for i, down_block in enumerate(unet.down_blocks): | |
model.down_blocks[i].resnets.load_state_dict(down_block.resnets.state_dict()) | |
if hasattr(model.down_blocks[i], "attentions"): | |
model.down_blocks[i].attentions.load_state_dict(down_block.attentions.state_dict()) | |
if model.down_blocks[i].downsamplers: | |
model.down_blocks[i].downsamplers.load_state_dict(down_block.downsamplers.state_dict()) | |
for i, up_block in enumerate(unet.up_blocks): | |
model.up_blocks[i].resnets.load_state_dict(up_block.resnets.state_dict()) | |
if hasattr(model.up_blocks[i], "attentions"): | |
model.up_blocks[i].attentions.load_state_dict(up_block.attentions.state_dict()) | |
if model.up_blocks[i].upsamplers: | |
model.up_blocks[i].upsamplers.load_state_dict(up_block.upsamplers.state_dict()) | |
model.mid_block.resnets.load_state_dict(unet.mid_block.resnets.state_dict()) | |
model.mid_block.attentions.load_state_dict(unet.mid_block.attentions.state_dict()) | |
if unet.conv_norm_out is not None: | |
model.conv_norm_out.load_state_dict(unet.conv_norm_out.state_dict()) | |
if unet.conv_act is not None: | |
model.conv_act.load_state_dict(unet.conv_act.state_dict()) | |
model.conv_out.load_state_dict(unet.conv_out.state_dict()) | |
if has_motion_adapter: | |
model.load_motion_modules(motion_adapter) | |
# ensure that the Motion UNet is the same dtype as the UNet2DConditionModel | |
model.to(unet.dtype) | |
return model | |
def freeze_unet2d_params(self) -> None: | |
"""Freeze the weights of just the UNet2DConditionModel, and leave the motion modules | |
unfrozen for fine tuning. | |
""" | |
# Freeze everything | |
for param in self.parameters(): | |
param.requires_grad = False | |
# Unfreeze Motion Modules | |
for down_block in self.down_blocks: | |
motion_modules = down_block.motion_modules | |
for param in motion_modules.parameters(): | |
param.requires_grad = True | |
for up_block in self.up_blocks: | |
motion_modules = up_block.motion_modules | |
for param in motion_modules.parameters(): | |
param.requires_grad = True | |
if hasattr(self.mid_block, "motion_modules"): | |
motion_modules = self.mid_block.motion_modules | |
for param in motion_modules.parameters(): | |
param.requires_grad = True | |
def load_motion_modules(self, motion_adapter: Optional[MotionAdapter]) -> None: | |
for i, down_block in enumerate(motion_adapter.down_blocks): | |
self.down_blocks[i].motion_modules.load_state_dict(down_block.motion_modules.state_dict()) | |
for i, up_block in enumerate(motion_adapter.up_blocks): | |
self.up_blocks[i].motion_modules.load_state_dict(up_block.motion_modules.state_dict()) | |
# to support older motion modules that don't have a mid_block | |
if hasattr(self.mid_block, "motion_modules"): | |
self.mid_block.motion_modules.load_state_dict(motion_adapter.mid_block.motion_modules.state_dict()) | |
def save_motion_modules( | |
self, | |
save_directory: str, | |
is_main_process: bool = True, | |
safe_serialization: bool = True, | |
variant: Optional[str] = None, | |
push_to_hub: bool = False, | |
**kwargs, | |
) -> None: | |
state_dict = self.state_dict() | |
# Extract all motion modules | |
motion_state_dict = {} | |
for k, v in state_dict.items(): | |
if "motion_modules" in k: | |
motion_state_dict[k] = v | |
adapter = MotionAdapter( | |
block_out_channels=self.config["block_out_channels"], | |
motion_layers_per_block=self.config["layers_per_block"], | |
motion_norm_num_groups=self.config["norm_num_groups"], | |
motion_num_attention_heads=self.config["motion_num_attention_heads"], | |
motion_max_seq_length=self.config["motion_max_seq_length"], | |
use_motion_mid_block=self.config["use_motion_mid_block"], | |
) | |
adapter.load_state_dict(motion_state_dict) | |
adapter.save_pretrained( | |
save_directory=save_directory, | |
is_main_process=is_main_process, | |
safe_serialization=safe_serialization, | |
variant=variant, | |
push_to_hub=push_to_hub, | |
**kwargs, | |
) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: | |
""" | |
Sets the attention processor to use [feed forward | |
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). | |
Parameters: | |
chunk_size (`int`, *optional*): | |
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually | |
over each tensor of dim=`dim`. | |
dim (`int`, *optional*, defaults to `0`): | |
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) | |
or dim=1 (sequence length). | |
""" | |
if dim not in [0, 1]: | |
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") | |
# By default chunk size is 1 | |
chunk_size = chunk_size or 1 | |
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, chunk_size, dim) | |
def disable_forward_chunking(self) -> None: | |
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): | |
if hasattr(module, "set_chunk_feed_forward"): | |
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) | |
for child in module.children(): | |
fn_recursive_feed_forward(child, chunk_size, dim) | |
for module in self.children(): | |
fn_recursive_feed_forward(module, None, 0) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor | |
def set_default_attn_processor(self) -> None: | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
processor = AttnAddedKVProcessor() | |
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): | |
processor = AttnProcessor() | |
else: | |
raise ValueError( | |
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
) | |
self.set_attn_processor(processor) | |
def _set_gradient_checkpointing(self, module, value: bool = False) -> None: | |
if isinstance(module, (CrossAttnDownBlockMotion, DownBlockMotion, CrossAttnUpBlockMotion, UpBlockMotion)): | |
module.gradient_checkpointing = value | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu | |
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float) -> None: | |
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497. | |
The suffixes after the scaling factors represent the stage blocks where they are being applied. | |
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that | |
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. | |
Args: | |
s1 (`float`): | |
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to | |
mitigate the "oversmoothing effect" in the enhanced denoising process. | |
s2 (`float`): | |
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to | |
mitigate the "oversmoothing effect" in the enhanced denoising process. | |
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. | |
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. | |
""" | |
for i, upsample_block in enumerate(self.up_blocks): | |
setattr(upsample_block, "s1", s1) | |
setattr(upsample_block, "s2", s2) | |
setattr(upsample_block, "b1", b1) | |
setattr(upsample_block, "b2", b2) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu | |
def disable_freeu(self) -> None: | |
"""Disables the FreeU mechanism.""" | |
freeu_keys = {"s1", "s2", "b1", "b2"} | |
for i, upsample_block in enumerate(self.up_blocks): | |
for k in freeu_keys: | |
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None: | |
setattr(upsample_block, k, None) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections | |
def fuse_qkv_projections(self): | |
""" | |
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
are fused. For cross-attention modules, key and value projection matrices are fused. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
self.original_attn_processors = None | |
for _, attn_processor in self.attn_processors.items(): | |
if "Added" in str(attn_processor.__class__.__name__): | |
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
self.original_attn_processors = self.attn_processors | |
for module in self.modules(): | |
if isinstance(module, Attention): | |
module.fuse_projections(fuse=True) | |
self.set_attn_processor(FusedAttnProcessor2_0()) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
def unfuse_qkv_projections(self): | |
"""Disables the fused QKV projection if enabled. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
if self.original_attn_processors is not None: | |
self.set_attn_processor(self.original_attn_processors) | |
def forward( | |
self, | |
sample: torch.Tensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
timestep_cond: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
mid_block_additional_residual: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
) -> Union[UNetMotionOutput, Tuple[torch.Tensor]]: | |
r""" | |
The [`UNetMotionModel`] forward method. | |
Args: | |
sample (`torch.Tensor`): | |
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width`. | |
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input. | |
encoder_hidden_states (`torch.Tensor`): | |
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. | |
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`): | |
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed | |
through the `self.time_embedding` layer to obtain the timestep embeddings. | |
attention_mask (`torch.Tensor`, *optional*, defaults to `None`): | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
negative values to the attention scores corresponding to "discard" tokens. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*): | |
A tuple of tensors that if specified are added to the residuals of down unet blocks. | |
mid_block_additional_residual: (`torch.Tensor`, *optional*): | |
A tensor that if specified is added to the residual of the middle unet block. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unets.unet_motion_model.UNetMotionOutput`] instead of a plain | |
tuple. | |
Returns: | |
[`~models.unets.unet_motion_model.UNetMotionOutput`] or `tuple`: | |
If `return_dict` is True, an [`~models.unets.unet_motion_model.UNetMotionOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is the sample tensor. | |
""" | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2**self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
logger.info("Forward upsample size to force interpolation output size.") | |
forward_upsample_size = True | |
# prepare attention_mask | |
if attention_mask is not None: | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
num_frames = sample.shape[2] | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=self.dtype) | |
emb = self.time_embedding(t_emb, timestep_cond) | |
aug_emb = None | |
if self.config.addition_embed_type == "text_time": | |
if "text_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" | |
) | |
text_embeds = added_cond_kwargs.get("text_embeds") | |
if "time_ids" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" | |
) | |
time_ids = added_cond_kwargs.get("time_ids") | |
time_embeds = self.add_time_proj(time_ids.flatten()) | |
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) | |
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) | |
add_embeds = add_embeds.to(emb.dtype) | |
aug_emb = self.add_embedding(add_embeds) | |
emb = emb if aug_emb is None else emb + aug_emb | |
emb = emb.repeat_interleave(repeats=num_frames, dim=0) | |
encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0) | |
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj": | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
image_embeds = self.encoder_hid_proj(image_embeds) | |
image_embeds = [image_embed.repeat_interleave(repeats=num_frames, dim=0) for image_embed in image_embeds] | |
encoder_hidden_states = (encoder_hidden_states, image_embeds) | |
# 2. pre-process | |
sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:]) | |
sample = self.conv_in(sample) | |
# 3. down | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
num_frames=num_frames, | |
cross_attention_kwargs=cross_attention_kwargs, | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames) | |
down_block_res_samples += res_samples | |
if down_block_additional_residuals is not None: | |
new_down_block_res_samples = () | |
for down_block_res_sample, down_block_additional_residual in zip( | |
down_block_res_samples, down_block_additional_residuals | |
): | |
down_block_res_sample = down_block_res_sample + down_block_additional_residual | |
new_down_block_res_samples += (down_block_res_sample,) | |
down_block_res_samples = new_down_block_res_samples | |
# 4. mid | |
if self.mid_block is not None: | |
# To support older versions of motion modules that don't have a mid_block | |
if hasattr(self.mid_block, "motion_modules"): | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
num_frames=num_frames, | |
cross_attention_kwargs=cross_attention_kwargs, | |
) | |
else: | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
) | |
if mid_block_additional_residual is not None: | |
sample = sample + mid_block_additional_residual | |
# 5. up | |
for i, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
num_frames=num_frames, | |
cross_attention_kwargs=cross_attention_kwargs, | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
upsample_size=upsample_size, | |
num_frames=num_frames, | |
) | |
# 6. post-process | |
if self.conv_norm_out: | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
# reshape to (batch, channel, framerate, width, height) | |
sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4) | |
if not return_dict: | |
return (sample,) | |
return UNetMotionOutput(sample=sample) | |