Omartificial-Intelligence-Space commited on
Commit
bb49240
·
verified ·
1 Parent(s): 6cafc91

update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -69
app.py CHANGED
@@ -4,11 +4,9 @@ from wikipediaapi import Wikipedia
4
  import textwrap
5
  import numpy as np
6
  from openai import OpenAI
7
- from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
8
- import os
9
 
10
  # Function to process the input and generate the output
11
- def process_query(wiki_page, embed_dim, query, mode):
12
  model_mapping = {
13
  "Arabic-mpnet-base-all-nli-triplet": "Omartificial-Intelligence-Space/Arabic-mpnet-base-all-nli-triplet",
14
  "Arabic-all-nli-triplet-Matryoshka": "Omartificial-Intelligence-Space/Arabic-all-nli-triplet-Matryoshka",
@@ -17,78 +15,70 @@ def process_query(wiki_page, embed_dim, query, mode):
17
  "Marbert-all-nli-triplet-Matryoshka": "Omartificial-Intelligence-Space/Marbert-all-nli-triplet-Matryoshka"
18
  }
19
 
20
- hf_token = os.getenv('hf_token')
21
- openai_api_key = os.getenv('openai_api_key')
22
-
23
  wiki = Wikipedia('RAGBot/0.0', 'ar')
24
  doc = wiki.page(wiki_page).text
25
  paragraphs = doc.split('\n\n') # chunking
 
26
  for i, p in enumerate(paragraphs):
27
  wrapped_text = textwrap.fill(p, width=100)
28
 
29
- responses = {}
30
-
31
- for model_name, model_path in model_mapping.items():
32
- model = SentenceTransformer(model_path, trust_remote_code=True, truncate_dim=embed_dim, use_auth_token=hf_token)
33
- docs_embed = model.encode(paragraphs, normalize_embeddings=True)
34
- query_embed = model.encode(query, normalize_embeddings=True)
35
- similarities = np.dot(docs_embed, query_embed.T)
36
- top_3_idx = np.argsort(similarities, axis=0)[-3:][::-1].tolist()
37
- most_similar_documents = [paragraphs[idx] for idx in top_3_idx]
38
-
39
- CONTEXT = ""
40
- for p in most_similar_documents:
41
- wrapped_text = textwrap.fill(p, width=100)
42
- CONTEXT += wrapped_text + "\n\n"
43
-
44
- prompt = f"""
45
- use the following CONTEXT to answer the QUESTION at the end.
46
- If you don't know the answer, just say that you don't know, don't try to make up an answer.
47
- CONTEXT: {CONTEXT}
48
- QUESTION: {query}
49
- """
50
-
51
- if mode == "OpenAI":
52
- client = OpenAI(api_key=openai_api_key)
53
- response = client.chat.completions.create(
54
- model="gpt-4",
55
- messages=[
56
- {"role": "user", "content": prompt},
57
- ]
58
- )
59
- responses[model_name] = response.choices[0].message.content
60
-
61
- elif mode == "OpenSource":
62
- tokenizer = AutoTokenizer.from_pretrained("google/gemini-2b", use_auth_token=hf_token)
63
- model = AutoModelForCausalLM.from_pretrained("google/gemini-2b", use_auth_token=hf_token)
64
- generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
65
- response = generator(prompt, max_length=512, num_return_sequences=1)
66
- responses[model_name] = response[0]['generated_text']
67
-
68
- return "\n\n".join([f"Model: {model_name}\nResponse: {response}" for model_name, response in responses.items()])
69
 
70
- with gr.Blocks() as demo:
71
- wiki_page_input = gr.Textbox(label="Wikipedia Page (in Arabic)")
72
- query_input = gr.Textbox(label="Query (in Arabic)")
73
-
74
- embed_dim_choice = gr.Dropdown(
75
- choices=[768, 512, 256, 128, 64],
76
- label="Embedding Dimension"
77
- )
78
-
79
- mode_choice = gr.Radio(
80
- choices=["OpenAI", "OpenSource"],
81
- label="Choose Mode"
 
 
 
 
 
 
82
  )
83
 
84
- output_text = gr.Textbox(label="Output")
85
-
86
- def on_mode_change(mode):
87
- api_key_input.visible = mode == "OpenAI"
88
-
89
- mode_choice.change(on_mode_change, inputs=mode_choice, outputs=[])
90
-
91
- submit_button = gr.Button("Submit")
92
- submit_button.click(process_query, inputs=[wiki_page_input, embed_dim_choice, query_input, mode_choice], outputs=output_text)
93
-
94
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  import textwrap
5
  import numpy as np
6
  from openai import OpenAI
 
 
7
 
8
  # Function to process the input and generate the output
9
+ def process_query(wiki_page, model_name, embed_dim, query, api_key):
10
  model_mapping = {
11
  "Arabic-mpnet-base-all-nli-triplet": "Omartificial-Intelligence-Space/Arabic-mpnet-base-all-nli-triplet",
12
  "Arabic-all-nli-triplet-Matryoshka": "Omartificial-Intelligence-Space/Arabic-all-nli-triplet-Matryoshka",
 
15
  "Marbert-all-nli-triplet-Matryoshka": "Omartificial-Intelligence-Space/Marbert-all-nli-triplet-Matryoshka"
16
  }
17
 
18
+ model_path = model_mapping[model_name]
19
+ model = SentenceTransformer(model_path, trust_remote_code=True, truncate_dim=embed_dim)
 
20
  wiki = Wikipedia('RAGBot/0.0', 'ar')
21
  doc = wiki.page(wiki_page).text
22
  paragraphs = doc.split('\n\n') # chunking
23
+
24
  for i, p in enumerate(paragraphs):
25
  wrapped_text = textwrap.fill(p, width=100)
26
 
27
+ docs_embed = model.encode(paragraphs, normalize_embeddings=True)
28
+ query_embed = model.encode(query, normalize_embeddings=True)
29
+ similarities = np.dot(docs_embed, query_embed.T)
30
+ top_3_idx = np.argsort(similarities, axis=0)[-3:][::-1].tolist()
31
+ most_similar_documents = [paragraphs[idx] for idx in top_3_idx]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
+ CONTEXT = ""
34
+ for i, p in enumerate(most_similar_documents):
35
+ wrapped_text = textwrap.fill(p, width=100)
36
+ CONTEXT += wrapped_text + "\n\n"
37
+
38
+ prompt = f"""
39
+ use the following CONTEXT to answer the QUESTION at the end.
40
+ If you don't know the answer, just say that you don't know, don't try to make up an answer.
41
+ CONTEXT: {CONTEXT}
42
+ QUESTION: {query}
43
+ """
44
+
45
+ client = OpenAI(api_key=api_key)
46
+ response = client.chat.completions.create(
47
+ model="gpt-4o",
48
+ messages=[
49
+ {"role": "user", "content": prompt},
50
+ ]
51
  )
52
 
53
+ return response.choices[0].message.content
54
+
55
+ # Define the interface
56
+ wiki_page_input = gr.Textbox(label="Wikipedia Page (in Arabic)")
57
+ query_input = gr.Textbox(label="Query (in Arabic)")
58
+ api_key_input = gr.Textbox(label="OpenAI API Key", type="password")
59
+
60
+ model_choice = gr.Dropdown(
61
+ choices=[
62
+ "Arabic-mpnet-base-all-nli-triplet",
63
+ "Arabic-all-nli-triplet-Matryoshka",
64
+ "Arabert-all-nli-triplet-Matryoshka",
65
+ "Arabic-labse-Matryoshka",
66
+ "Marbert-all-nli-triplet-Matryoshka"
67
+ ],
68
+ label="Choose Embedding Model"
69
+ )
70
+
71
+ embed_dim_choice = gr.Dropdown(
72
+ choices=[768, 512, 256, 128, 64],
73
+ label="Embedding Dimension"
74
+ )
75
+
76
+ output_text = gr.Textbox(label="Output")
77
+
78
+ gr.Interface(
79
+ fn=process_query,
80
+ inputs=[wiki_page_input, model_choice, embed_dim_choice, query_input, api_key_input],
81
+ outputs=output_text,
82
+ title="Arabic Wiki RAG",
83
+ description="Choose a Wikipedia page, embedding model, and dimension to answer a query in Arabic."
84
+ ).launch()