Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from langchain_groq import ChatGroq
|
4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
7 |
+
from langchain_core.prompts import ChatPromptTemplate
|
8 |
+
from langchain.chains import create_retrieval_chain
|
9 |
+
from langchain_community.vectorstores import FAISS
|
10 |
+
from langchain_community.document_loaders import PyPDFLoader
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import tempfile
|
13 |
+
|
14 |
+
# Show title and description.
|
15 |
+
st.title("π Document question answering")
|
16 |
+
st.write(
|
17 |
+
"Upload a document below and ask a question about it β Groq will answer! "
|
18 |
+
"To use this app, you need to provide an Groq API key, which you can get [here](https://console.groq.com/keys). "
|
19 |
+
)
|
20 |
+
|
21 |
+
# Ask user for their Groq API key via `st.text_input`.
|
22 |
+
# Alternatively, you can store the API key in `./.streamlit/secrets.toml` and access it
|
23 |
+
# via `st.secrets`, see https://docs.streamlit.io/develop/concepts/connections/secrets-management
|
24 |
+
# Define model options
|
25 |
+
model_options = [
|
26 |
+
"llama3-8b-8192",
|
27 |
+
"llama3-70b-8192",
|
28 |
+
"llama-3.1-8b-instant",
|
29 |
+
"llama-3.1-70b-versatile",
|
30 |
+
"llama-3.2-1b-preview",
|
31 |
+
"llama-3.2-3b-preview",
|
32 |
+
"llama-3.2-11b-text-preview",
|
33 |
+
"llama-3.2-90b-text-preview",
|
34 |
+
"mixtral-8x7b-32768",
|
35 |
+
"gemma-7b-it",
|
36 |
+
"gemma2-9b-it"
|
37 |
+
]
|
38 |
+
# Sidebar elements
|
39 |
+
with st.sidebar:
|
40 |
+
selected_model = st.selectbox("Select any Groq Model", model_options)
|
41 |
+
groq_api_key = st.text_input("Groq API Key", type="password")
|
42 |
+
if not groq_api_key:
|
43 |
+
st.info("Please add your Groq API key to continue.", icon="ποΈ")
|
44 |
+
else:
|
45 |
+
|
46 |
+
# Create an Groq client.
|
47 |
+
llm = ChatGroq(groq_api_key=groq_api_key, model_name=selected_model)
|
48 |
+
|
49 |
+
prompt = ChatPromptTemplate.from_template(
|
50 |
+
"""
|
51 |
+
Answer the questions based on the provided context only.
|
52 |
+
Please provide the most accurate response based on the question.
|
53 |
+
<context>
|
54 |
+
{context}
|
55 |
+
<context>
|
56 |
+
Questions: {input}
|
57 |
+
"""
|
58 |
+
)
|
59 |
+
|
60 |
+
def create_vector_db_out_of_the_uploaded_pdf_file(pdf_file):
|
61 |
+
|
62 |
+
|
63 |
+
if "vector_store" not in st.session_state:
|
64 |
+
|
65 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
66 |
+
|
67 |
+
temp_file.write(pdf_file.read())
|
68 |
+
|
69 |
+
pdf_file_path = temp_file.name
|
70 |
+
|
71 |
+
st.session_state.embeddings = HuggingFaceEmbeddings(model_name='BAAI/bge-small-en-v1.5', model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
|
72 |
+
|
73 |
+
st.session_state.loader = PyPDFLoader(pdf_file_path)
|
74 |
+
|
75 |
+
st.session_state.text_document_from_pdf = st.session_state.loader.load()
|
76 |
+
|
77 |
+
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
78 |
+
|
79 |
+
st.session_state.final_document_chunks = st.session_state.text_splitter.split_documents(st.session_state.text_document_from_pdf)
|
80 |
+
|
81 |
+
st.session_state.vector_store = FAISS.from_documents(st.session_state.final_document_chunks, st.session_state.embeddings)
|
82 |
+
|
83 |
+
|
84 |
+
pdf_input_from_user = st.file_uploader("Upload the PDF file", type=['pdf'])
|
85 |
+
|
86 |
+
|
87 |
+
if pdf_input_from_user is not None:
|
88 |
+
|
89 |
+
if st.button("Create the Vector DB from the uploaded PDF file"):
|
90 |
+
|
91 |
+
if pdf_input_from_user is not None:
|
92 |
+
|
93 |
+
create_vector_db_out_of_the_uploaded_pdf_file(pdf_input_from_user)
|
94 |
+
|
95 |
+
st.success("Vector Store DB for this PDF file Is Ready")
|
96 |
+
|
97 |
+
else:
|
98 |
+
|
99 |
+
st.write("Please upload a PDF file first")
|
100 |
+
|
101 |
+
|
102 |
+
# Main section for question input and results
|
103 |
+
if "vector_store" in st.session_state:
|
104 |
+
|
105 |
+
user_prompt = st.text_input("Enter Your Question related to the uploaded PDF")
|
106 |
+
|
107 |
+
if st.button('Submit Prompt'):
|
108 |
+
|
109 |
+
if user_prompt:
|
110 |
+
|
111 |
+
if "vector_store" in st.session_state:
|
112 |
+
|
113 |
+
document_chain = create_stuff_documents_chain(llm, prompt)
|
114 |
+
|
115 |
+
retriever = st.session_state.vector_store.as_retriever()
|
116 |
+
|
117 |
+
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
118 |
+
|
119 |
+
response = retrieval_chain.invoke({'input': user_prompt})
|
120 |
+
|
121 |
+
st.write(response['answer'])
|
122 |
+
|
123 |
+
else:
|
124 |
+
|
125 |
+
st.write("Please embed the document first by uploading a PDF file.")
|
126 |
+
|
127 |
+
else:
|
128 |
+
|
129 |
+
st.error('Please write your prompt')
|