import streamlit as st import os from langchain_groq import ChatGroq from langchain_huggingface import HuggingFaceEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate from langchain.chains import create_retrieval_chain from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFLoader from dotenv import load_dotenv import tempfile # Show title and description. st.title("📄 Document question answering") st.write( "Upload a document below and ask a question about it – Groq will answer! " "To use this app, you need to provide an Groq API key, which you can get [here](https://console.groq.com/keys). " ) # Ask user for their Groq API key via `st.text_input`. # Alternatively, you can store the API key in `./.streamlit/secrets.toml` and access it # via `st.secrets`, see https://docs.streamlit.io/develop/concepts/connections/secrets-management # Define model options model_options = [ "llama3-8b-8192", "llama3-70b-8192", "llama-3.1-8b-instant", "llama-3.1-70b-versatile", "llama-3.2-1b-preview", "llama-3.2-3b-preview", "llama-3.2-11b-text-preview", "llama-3.2-90b-text-preview", "mixtral-8x7b-32768", "gemma-7b-it", "gemma2-9b-it" ] # Sidebar elements with st.sidebar: selected_model = st.selectbox("Select any Groq Model", model_options) groq_api_key = st.text_input("Groq API Key", type="password") if not groq_api_key: st.info("Please add your Groq API key to continue.", icon="🗝️") else: # Create an Groq client. llm = ChatGroq(groq_api_key=groq_api_key, model_name=selected_model) prompt = ChatPromptTemplate.from_template( """ Answer the questions based on the provided context only. Please provide the most accurate response based on the question. {context} Questions: {input} """ ) def create_vector_db_out_of_the_uploaded_pdf_file(pdf_file): if "vector_store" not in st.session_state: with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file.write(pdf_file.read()) pdf_file_path = temp_file.name st.session_state.embeddings = HuggingFaceEmbeddings(model_name='BAAI/bge-small-en-v1.5', model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) st.session_state.loader = PyPDFLoader(pdf_file_path) st.session_state.text_document_from_pdf = st.session_state.loader.load() st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) st.session_state.final_document_chunks = st.session_state.text_splitter.split_documents(st.session_state.text_document_from_pdf) st.session_state.vector_store = FAISS.from_documents(st.session_state.final_document_chunks, st.session_state.embeddings) pdf_input_from_user = st.file_uploader("Upload the PDF file", type=['pdf']) if pdf_input_from_user is not None: if st.button("Create the Vector DB from the uploaded PDF file"): if pdf_input_from_user is not None: create_vector_db_out_of_the_uploaded_pdf_file(pdf_input_from_user) st.success("Vector Store DB for this PDF file Is Ready") else: st.write("Please upload a PDF file first") # Main section for question input and results if "vector_store" in st.session_state: user_prompt = st.text_input("Enter Your Question related to the uploaded PDF") if st.button('Submit Prompt'): if user_prompt: if "vector_store" in st.session_state: document_chain = create_stuff_documents_chain(llm, prompt) retriever = st.session_state.vector_store.as_retriever() retrieval_chain = create_retrieval_chain(retriever, document_chain) response = retrieval_chain.invoke({'input': user_prompt}) st.write(response['answer']) else: st.write("Please embed the document first by uploading a PDF file.") else: st.error('Please write your prompt')