Prathamesh1420's picture
Update app.py
2177393 verified
raw
history blame
3.42 kB
import streamlit as st
import os
from streamlit_chat import message
from langchain_groq import ChatGroq
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationSummaryMemory
from transformers import pipeline
from huggingface_hub import login
# Add your Hugging Face token here
HUGGINGFACE_TOKEN = os.getenv("HF")
login(token=HUGGINGFACE_TOKEN)
# Initialize the text classifier for guardrails
classifier = pipeline("text-classification", model="meta-llama/Prompt-Guard-86M")
# Set session state variables
if 'conversation' not in st.session_state:
st.session_state['conversation'] = None
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'API_Key' not in st.session_state:
st.session_state['API_Key'] = ''
# Setting page title and header
st.set_page_config(page_title="Chat GPT Clone", page_icon=":robot_face:")
st.markdown("<h1 style='text-align: center;'>How can I assist you? </h1>", unsafe_allow_html=True)
# Sidebar configuration
st.sidebar.title("😎")
groq_api_key = st.sidebar.text_input(label="Groq API Key", type="password")
summarise_button = st.sidebar.button("Summarise the conversation", key="summarise")
if summarise_button:
st.sidebar.write("Nice chatting with you my friend ❤️:\n\n" + st.session_state['conversation'].memory.buffer)
# Function to get response from the chatbot
def getresponse(userInput, api_key):
# Classify the input using guardrails
classification = classifier(userInput)[0] # Get the first result
if classification['label'] == "JAILBREAK":
# If classified as Jailbreak, return a predefined safe response
return "You are attempting jailbreak/prompt injection. I can't help you with that. Please ask another question."
# Initialize the conversation chain if not already initialized
if st.session_state['conversation'] is None:
llm = ChatGroq(model="Gemma2-9b-It", groq_api_key=groq_api_key)
st.session_state['conversation'] = ConversationChain(
llm=llm,
verbose=True,
memory=ConversationSummaryMemory(llm=llm),
)
# Generate a response using the conversation chain
response = st.session_state['conversation'].predict(input=userInput)
return response
# Response container
response_container = st.container()
# User input container
container = st.container()
with container:
with st.form(key='my_form', clear_on_submit=True):
user_input = st.text_area("Your question goes here:", key='input', height=100)
submit_button = st.form_submit_button(label='Send')
if submit_button:
# Append user input to message history
st.session_state['messages'].append(user_input)
# Get response from the chatbot or guardrails
model_response = getresponse(user_input, st.session_state['API_Key'])
# Append model response to message history
st.session_state['messages'].append(model_response)
# Display the conversation
with response_container:
for i in range(len(st.session_state['messages'])):
if (i % 2) == 0:
message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user')
else:
message(st.session_state['messages'][i], key=str(i) + '_AI')