|
import streamlit as st |
|
import os |
|
from streamlit_chat import message |
|
from langchain_groq import ChatGroq |
|
from langchain.chains import ConversationChain |
|
from langchain.chains.conversation.memory import ConversationSummaryMemory |
|
from transformers import pipeline |
|
|
|
from huggingface_hub import login |
|
|
|
|
|
HUGGINGFACE_TOKEN = os.getenv("HF") |
|
login(token=HUGGINGFACE_TOKEN) |
|
groq_api_key = os.getenv("GROQ_API_KEY") |
|
|
|
classifier = pipeline("text-classification", model="meta-llama/Prompt-Guard-86M") |
|
|
|
|
|
if 'conversation' not in st.session_state: |
|
st.session_state['conversation'] = None |
|
if 'messages' not in st.session_state: |
|
st.session_state['messages'] = [] |
|
if 'API_Key' not in st.session_state: |
|
st.session_state['API_Key'] = '' |
|
|
|
|
|
st.set_page_config(page_title="Chat GPT Clone", page_icon=":robot_face:") |
|
st.markdown("<h1 style='text-align: center;'>How can I assist you? </h1>", unsafe_allow_html=True) |
|
|
|
|
|
st.sidebar.title("😎") |
|
|
|
summarise_button = st.sidebar.button("Summarise the conversation", key="summarise") |
|
if summarise_button: |
|
st.sidebar.write("Nice chatting with you my friend ❤️:\n\n" + st.session_state['conversation'].memory.buffer) |
|
|
|
|
|
def getresponse(userInput, api_key): |
|
|
|
classification = classifier(userInput)[0] |
|
if classification['label'] == "JAILBREAK": |
|
|
|
return "You are attempting jailbreak/prompt injection. I can't help you with that. Please ask another question." |
|
|
|
|
|
if st.session_state['conversation'] is None: |
|
llm = ChatGroq(model="Gemma2-9b-It", groq_api_key=groq_api_key) |
|
st.session_state['conversation'] = ConversationChain( |
|
llm=llm, |
|
verbose=True, |
|
memory=ConversationSummaryMemory(llm=llm), |
|
) |
|
|
|
|
|
response = st.session_state['conversation'].predict(input=userInput) |
|
return response |
|
|
|
|
|
response_container = st.container() |
|
|
|
container = st.container() |
|
|
|
with container: |
|
with st.form(key='my_form', clear_on_submit=True): |
|
user_input = st.text_area("Your question goes here:", key='input', height=100) |
|
submit_button = st.form_submit_button(label='Send') |
|
|
|
if submit_button: |
|
|
|
st.session_state['messages'].append(user_input) |
|
|
|
model_response = getresponse(user_input, st.session_state['API_Key']) |
|
|
|
st.session_state['messages'].append(model_response) |
|
|
|
|
|
with response_container: |
|
for i in range(len(st.session_state['messages'])): |
|
if (i % 2) == 0: |
|
message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user') |
|
else: |
|
message(st.session_state['messages'][i], key=str(i) + '_AI') |
|
|