import streamlit as st from streamlit_chat import message from langchain_groq import ChatGroq from langchain.chains import ConversationChain from langchain.chains.conversation.memory import ConversationSummaryMemory from transformers import pipeline from huggingface_hub import login # Add your Hugging Face token here HUGGINGFACE_TOKEN = os.getenv("HF") login(token=HUGGINGFACE_TOKEN) # Initialize the text classifier for guardrails classifier = pipeline("text-classification", model="meta-llama/Prompt-Guard-86M") # Set session state variables if 'conversation' not in st.session_state: st.session_state['conversation'] = None if 'messages' not in st.session_state: st.session_state['messages'] = [] if 'API_Key' not in st.session_state: st.session_state['API_Key'] = '' # Setting page title and header st.set_page_config(page_title="Chat GPT Clone", page_icon=":robot_face:") st.markdown("

How can I assist you?

", unsafe_allow_html=True) # Sidebar configuration st.sidebar.title("😎") groq_api_key = st.sidebar.text_input(label="Groq API Key", type="password") summarise_button = st.sidebar.button("Summarise the conversation", key="summarise") if summarise_button: st.sidebar.write("Nice chatting with you my friend ❤️:\n\n" + st.session_state['conversation'].memory.buffer) # Function to get response from the chatbot def getresponse(userInput, api_key): # Classify the input using guardrails classification = classifier(userInput)[0] # Get the first result if classification['label'] == "JAILBREAK": # If classified as Jailbreak, return a predefined safe response return "You are attempting jailbreak/prompt injection. I can't help you with that. Please ask another question." # Initialize the conversation chain if not already initialized if st.session_state['conversation'] is None: llm = ChatGroq(model="Gemma2-9b-It", groq_api_key=groq_api_key) st.session_state['conversation'] = ConversationChain( llm=llm, verbose=True, memory=ConversationSummaryMemory(llm=llm), ) # Generate a response using the conversation chain response = st.session_state['conversation'].predict(input=userInput) return response # Response container response_container = st.container() # User input container container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_area("Your question goes here:", key='input', height=100) submit_button = st.form_submit_button(label='Send') if submit_button: # Append user input to message history st.session_state['messages'].append(user_input) # Get response from the chatbot or guardrails model_response = getresponse(user_input, st.session_state['API_Key']) # Append model response to message history st.session_state['messages'].append(model_response) # Display the conversation with response_container: for i in range(len(st.session_state['messages'])): if (i % 2) == 0: message(st.session_state['messages'][i], is_user=True, key=str(i) + '_user') else: message(st.session_state['messages'][i], key=str(i) + '_AI')