RaghuCourage9605
commited on
Commit
•
b7bbf35
1
Parent(s):
aa31cef
Update app.py
Browse files
app.py
CHANGED
@@ -2,34 +2,27 @@ import pickle
|
|
2 |
import gradio as gr
|
3 |
import re
|
4 |
import spacy
|
5 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
import numpy as np
|
7 |
-
from
|
|
|
|
|
8 |
import subprocess
|
9 |
import sys
|
10 |
-
|
11 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "spacy"])
|
12 |
subprocess.check_call([sys.executable, "-m", "spacy", "download", "en_core_web_sm"])
|
13 |
|
|
|
14 |
with open('tfidf_vectorizer.pkl', 'rb') as vectorizer_file:
|
15 |
tfidf_vectorizer = pickle.load(vectorizer_file)
|
16 |
|
17 |
-
with open('
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
checkpoint = "answerdotai/ModernBERT-base"
|
22 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
23 |
-
tf_idf = TfidfVectorizer()
|
24 |
|
|
|
25 |
nlp = spacy.load("en_core_web_sm")
|
26 |
|
27 |
class TextPreprocessing:
|
28 |
-
def __init__(self, text: str, tokenizer, tfidf_vectorizer: TfidfVectorizer = None):
|
29 |
-
self.text = text
|
30 |
-
self.tokenizer = tokenizer
|
31 |
-
self.tfidf_vectorizer = tfidf_vectorizer or TfidfVectorizer()
|
32 |
-
|
33 |
@staticmethod
|
34 |
def Cleaning_text(text: str) -> str:
|
35 |
"""
|
@@ -44,105 +37,31 @@ class TextPreprocessing:
|
|
44 |
text = re.sub(r'\s+', ' ', text).strip()
|
45 |
return text
|
46 |
|
47 |
-
@staticmethod
|
48 |
-
def Tokenization_text(text: str) -> list:
|
49 |
-
"""
|
50 |
-
Tokenizes the text into a list of words, excluding punctuations and spaces.
|
51 |
-
"""
|
52 |
-
doc = nlp(text)
|
53 |
-
tokens = [token.text for token in doc if not token.is_punct and not token.is_space]
|
54 |
-
return tokens
|
55 |
-
|
56 |
-
@staticmethod
|
57 |
-
def Lemmatization_text(text: str) -> str:
|
58 |
-
"""
|
59 |
-
Performs lemmatization on the text and returns the lemmatized version.
|
60 |
-
"""
|
61 |
-
doc = nlp(text)
|
62 |
-
lemmatized_text = ' '.join([token.lemma_ for token in doc if not token.is_punct and not token.is_space])
|
63 |
-
return lemmatized_text
|
64 |
-
|
65 |
-
@staticmethod
|
66 |
-
def Stopwords_removal(text: str) -> str:
|
67 |
-
"""
|
68 |
-
Removes stopwords from the input text.
|
69 |
-
"""
|
70 |
-
doc = nlp(text)
|
71 |
-
text_without_stopwords = ' '.join([token.text for token in doc if not token.is_stop])
|
72 |
-
return text_without_stopwords
|
73 |
-
|
74 |
-
def ModernBert_Tokenization(self) -> dict:
|
75 |
-
"""
|
76 |
-
Tokenizes the cleaned text using ModernBERT's tokenizer.
|
77 |
-
"""
|
78 |
-
cleaned_text = self.Cleaning_text(self.text)
|
79 |
-
tokenized_output = self.tokenizer(cleaned_text, return_tensors='pt', truncation=True, padding=True)
|
80 |
-
return tokenized_output
|
81 |
-
|
82 |
-
def Tfidf_Transformation(self, texts: list) -> np.ndarray:
|
83 |
-
"""
|
84 |
-
Applies TF-IDF transformation to a list of texts.
|
85 |
-
|
86 |
-
Args:
|
87 |
-
texts (list of str): List of text strings to apply the TF-IDF transformation.
|
88 |
-
|
89 |
-
Returns:
|
90 |
-
np.ndarray: TF-IDF feature matrix.
|
91 |
-
"""
|
92 |
-
tfidf_matrix = self.tfidf_vectorizer.fit_transform(texts)
|
93 |
-
return tfidf_matrix.toarray()
|
94 |
-
|
95 |
-
def BagOfWords_Transformation(self, texts: list) -> np.ndarray:
|
96 |
-
"""
|
97 |
-
Applies Bag of Words (BoW) transformation to a list of texts.
|
98 |
-
|
99 |
-
Args:
|
100 |
-
texts (list of str): List of text strings to apply the BoW transformation.
|
101 |
-
|
102 |
-
Returns:
|
103 |
-
np.ndarray: Bag of Words feature matrix.
|
104 |
-
"""
|
105 |
-
vectorizer = CountVectorizer()
|
106 |
-
bow_matrix = vectorizer.fit_transform(texts)
|
107 |
-
return bow_matrix.toarray()
|
108 |
-
|
109 |
-
def Ngram_Transformation(self, texts: list, ngram_range=(1, 2)) -> np.ndarray:
|
110 |
-
"""
|
111 |
-
Applies N-gram transformation (uni-grams, bi-grams, etc.) to a list of texts.
|
112 |
-
|
113 |
-
Args:
|
114 |
-
texts (list of str): List of text strings to apply the N-gram transformation.
|
115 |
-
ngram_range (tuple): The range of n-values for n-grams to extract. Default is (1, 2) for unigrams and bigrams.
|
116 |
-
|
117 |
-
Returns:
|
118 |
-
np.ndarray: N-gram feature matrix.
|
119 |
-
"""
|
120 |
-
vectorizer = CountVectorizer(ngram_range=ngram_range)
|
121 |
-
ngram_matrix = vectorizer.fit_transform(texts)
|
122 |
-
return ngram_matrix.toarray()
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
|
127 |
def preprocess_text(text):
|
128 |
-
|
129 |
-
|
|
|
|
|
130 |
return cleaned_text
|
131 |
|
132 |
|
133 |
def predict_news(text):
|
|
|
|
|
|
|
134 |
cleaned_text = preprocess_text(text)
|
135 |
X_input = tfidf_vectorizer.transform([cleaned_text])
|
136 |
-
prediction =
|
137 |
return "Fake News" if prediction == 0 else "Real News"
|
138 |
|
139 |
-
|
140 |
iface = gr.Interface(
|
141 |
fn=predict_news,
|
142 |
inputs=gr.Textbox(lines=7, placeholder="Enter the news article here..."),
|
143 |
outputs="text",
|
144 |
title="Fake News Classification",
|
145 |
-
description="Classify news articles as real or fake."
|
146 |
)
|
147 |
|
148 |
iface.launch()
|
|
|
2 |
import gradio as gr
|
3 |
import re
|
4 |
import spacy
|
5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
import numpy as np
|
7 |
+
from sklearn.linear_model import PassiveAggressiveClassifier
|
8 |
+
|
9 |
+
# Ensure required Spacy model is installed
|
10 |
import subprocess
|
11 |
import sys
|
|
|
12 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "spacy"])
|
13 |
subprocess.check_call([sys.executable, "-m", "spacy", "download", "en_core_web_sm"])
|
14 |
|
15 |
+
# Load the saved vectorizer and model
|
16 |
with open('tfidf_vectorizer.pkl', 'rb') as vectorizer_file:
|
17 |
tfidf_vectorizer = pickle.load(vectorizer_file)
|
18 |
|
19 |
+
with open('pac_model.pkl', 'rb') as model_file: # Updated to PAC model
|
20 |
+
pac_model = pickle.load(model_file)
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Load Spacy language model
|
23 |
nlp = spacy.load("en_core_web_sm")
|
24 |
|
25 |
class TextPreprocessing:
|
|
|
|
|
|
|
|
|
|
|
26 |
@staticmethod
|
27 |
def Cleaning_text(text: str) -> str:
|
28 |
"""
|
|
|
37 |
text = re.sub(r'\s+', ' ', text).strip()
|
38 |
return text
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def preprocess_text(text):
|
42 |
+
"""
|
43 |
+
Preprocess the text by cleaning it using the TextPreprocessing class.
|
44 |
+
"""
|
45 |
+
cleaned_text = TextPreprocessing.Cleaning_text(text)
|
46 |
return cleaned_text
|
47 |
|
48 |
|
49 |
def predict_news(text):
|
50 |
+
"""
|
51 |
+
Predict whether the input news text is real or fake.
|
52 |
+
"""
|
53 |
cleaned_text = preprocess_text(text)
|
54 |
X_input = tfidf_vectorizer.transform([cleaned_text])
|
55 |
+
prediction = pac_model.predict(X_input)
|
56 |
return "Fake News" if prediction == 0 else "Real News"
|
57 |
|
58 |
+
# Gradio Interface
|
59 |
iface = gr.Interface(
|
60 |
fn=predict_news,
|
61 |
inputs=gr.Textbox(lines=7, placeholder="Enter the news article here..."),
|
62 |
outputs="text",
|
63 |
title="Fake News Classification",
|
64 |
+
description="Classify news articles as real or fake using a Passive Aggressive Classifier."
|
65 |
)
|
66 |
|
67 |
iface.launch()
|