Spaces:
Sleeping
Sleeping
File size: 1,065 Bytes
affd330 c08a343 affd330 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
from torchvision.models._api import WeightsEnum
from torch.hub import load_state_dict_from_url
def get_state_dict(self, *args, **kwargs):
kwargs.pop("check_hash")
return load_state_dict_from_url(self.url, *args, **kwargs)
WeightsEnum.get_state_dict = get_state_dict
import torch
import torchvision
from torch import nn
def create_effnetb2_model(num_classes: int = 3,
seed: int = 42):
# 1, 2, 3 Create EffNetB2 pretrained weights, transforms and model
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
transforms = weights.transforms()
model = torchvision.models.efficientnet_b2(weights=weights)
# 4. Freeze all layers in the base model
for param in model.parameters():
param.requires_grad = False
# 5. Change classifier head with random seed for reproducibility
torch.manual_seed(seed)
model.classifier = nn.Sequential(
nn.Dropout(p= .3, inplace=True),
nn.Linear(in_features=1408, out_features=num_classes, bias=True)
)
return model, transforms
|