### 1. Imports and class names setup import gradio as gr import torch import os from timeit import default_timer as timer from model import create_effnetb2_model from typing import Tuple, Dict from pathlib import Path # Setup class names class_names = Path("class_names.txt").read_text(encoding="utf-8").splitlines() ### 2. Model and transforms preparation effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes = len(class_names)) # Load the saved weights effnetb2.load_state_dict(torch.load(f="09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth", map_location=torch.device("cpu"))) ### 3. Predict function def predict(img) -> Tuple[Dict, float]: # Start a timer start_time = timer() # Transform the input image for use with EffNetB2 img = effnetb2_transforms(img).unsqueeze(0) # Put model into eval mode to make prediction effnetb2.eval() with torch.inference_mode(): # Pass transformed image through the model pred_probs = torch.softmax(effnetb2(img), dim=1).squeeze() # Create a prediction label and prediction probability dictionary pred_labels_and_probs = {food: float(pred_probs[i]) for i, food in enumerate(class_names)} # Calculate pred time pred_time = round(timer() - start_time, 4) # Return pred dict and pred time return pred_labels_and_probs, pred_time ### 4. Create the Gradio app title = "FoodVision Big 🍕🥩🍣" description = "An [EfficientNetB2 Feature Extractor](https://pytorch.org/vision/main/models/efficientnet.html#efficientnet_b2) computer vision model to classify 101 different kinds of food." article = "Created at [09. Pytorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment)" # Create example list example_list = [["examples/" + example] for example in os.listdir("examples")] # Create the gradio demo demo = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=[gr.Label(num_top_classes=5, label="Predictions"), gr.Number(label="Prediction time (s)")], examples=example_list, title=title, description=description, article=article) # Launch the demo demo.launch() # demo.launch(debug=False, # Print errors locally? # share=False) # generate a publically available URL