from torchvision.models._api import WeightsEnum from torch.hub import load_state_dict_from_url def get_state_dict(self, *args, **kwargs): kwargs.pop("check_hash") return load_state_dict_from_url(self.url, *args, **kwargs) WeightsEnum.get_state_dict = get_state_dict import torch import torchvision from torch import nn def create_effnetb2_model(num_classes: int = 3, seed: int = 42): # 1, 2, 3 Create EffNetB2 pretrained weights, transforms and model weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT transforms = weights.transforms() model = torchvision.models.efficientnet_b2(weights=weights) # 4. Freeze all layers in the base model for param in model.parameters(): param.requires_grad = False # 5. Change classifier head with random seed for reproducibility torch.manual_seed(seed) model.classifier = nn.Sequential( nn.Dropout(p= .3, inplace=True), nn.Linear(in_features=1408, out_features=num_classes, bias=True) ) return model, transforms