Spaces:
Paused
Paused
Robin Genolet
commited on
Commit
·
9730359
1
Parent(s):
90d439d
test: auto gptq
Browse files- requirements.txt +0 -0
- utils/epfl_meditron_utils.py +43 -34
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|
utils/epfl_meditron_utils.py
CHANGED
@@ -1,38 +1,47 @@
|
|
1 |
-
from ctransformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
-
from transformers import pipeline
|
3 |
-
import streamlit as st
|
4 |
-
from langchain.chains import LLMChain
|
5 |
-
from langchain.prompts import PromptTemplate
|
6 |
-
|
7 |
-
# Simple inference example
|
8 |
-
# output = llm(
|
9 |
-
# "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant", # Prompt
|
10 |
-
# max_tokens=512, # Generate up to 512 tokens
|
11 |
-
# stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
|
12 |
-
# echo=True # Whether to echo the prompt
|
13 |
-
#)
|
14 |
-
|
15 |
-
prompt_format = "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant"
|
16 |
-
|
17 |
-
|
18 |
-
template = """Question: {question}
|
19 |
-
|
20 |
-
Answer:"""
|
21 |
-
|
22 |
|
23 |
|
24 |
|
25 |
def get_llm_response(repo, filename, model_type, gpu_layers, prompt):
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
|
3 |
|
4 |
def get_llm_response(repo, filename, model_type, gpu_layers, prompt):
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
+
|
7 |
+
model_name_or_path = "TheBloke/meditron-7B-GPTQ"
|
8 |
+
# To use a different branch, change revision
|
9 |
+
# For example: revision="gptq-4bit-128g-actorder_True"
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
11 |
+
device_map="auto",
|
12 |
+
trust_remote_code=False,
|
13 |
+
revision="main")
|
14 |
+
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
16 |
+
|
17 |
+
print("\n\n*** Generate:")
|
18 |
+
|
19 |
+
#input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
20 |
+
#output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
|
21 |
+
#print(tokenizer.decode(output[0]))
|
22 |
+
|
23 |
+
# Inference can also be done using transformers' pipeline
|
24 |
+
|
25 |
+
print("*** Pipeline:")
|
26 |
+
pipe = pipeline(
|
27 |
+
"text-generation",
|
28 |
+
model=model,
|
29 |
+
tokenizer=tokenizer,
|
30 |
+
max_new_tokens=512,
|
31 |
+
do_sample=True,
|
32 |
+
temperature=0.7,
|
33 |
+
top_p=0.95,
|
34 |
+
top_k=40,
|
35 |
+
repetition_penalty=1.1
|
36 |
+
)
|
37 |
+
|
38 |
+
prompt_template=f'''<|im_start|>system
|
39 |
+
{system_message}<|im_end|>
|
40 |
+
<|im_start|>user
|
41 |
+
{prompt}<|im_end|>
|
42 |
+
<|im_start|>assistant
|
43 |
+
'''.format(system_message="You are an assistant", prompt=prompt)
|
44 |
+
|
45 |
+
response = pipe(prompt_template)[0]['generated_text']
|
46 |
+
print(response)
|
47 |
+
return response
|