Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,88 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("
|
8 |
-
|
9 |
-
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
import urllib.request
|
4 |
+
import xml.etree.ElementTree as ET
|
5 |
+
|
6 |
+
# HuggingFace Inference Client
|
7 |
+
client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct")
|
8 |
+
|
9 |
+
# Funktion, um die Eingabe zu bereinigen und einen prägnanten Query zu erstellen
|
10 |
+
def generate_query(input_text):
|
11 |
+
stopwords = ["welche", "gibt", "es", "zum", "thema", "studien", "über", "zu", "dem"]
|
12 |
+
words = input_text.lower().split()
|
13 |
+
query = " ".join([word for word in words if word not in stopwords])
|
14 |
+
return query.strip()
|
15 |
+
|
16 |
+
# Funktion, um relevante Studien von arXiv zu suchen
|
17 |
+
def fetch_arxiv_summary(query, sort_by="relevance", sort_order="descending", max_results=20):
|
18 |
+
url = (f'http://export.arxiv.org/api/query?search_query=all:{urllib.parse.quote(query)}'
|
19 |
+
f'&start=0&max_results={max_results}&sortBy={sort_by}&sortOrder={sort_order}')
|
20 |
+
try:
|
21 |
+
data = urllib.request.urlopen(url)
|
22 |
+
xml_data = data.read().decode("utf-8")
|
23 |
+
root = ET.fromstring(xml_data)
|
24 |
+
summaries = []
|
25 |
+
for entry in root.findall(".//{http://www.w3.org/2005/Atom}entry"):
|
26 |
+
summary = entry.find("{http://www.w3.org/2005/Atom}summary")
|
27 |
+
if summary is not None:
|
28 |
+
summaries.append(summary.text.strip())
|
29 |
+
return summaries if summaries else ["Keine relevanten Studien gefunden."]
|
30 |
+
except Exception as e:
|
31 |
+
return [f"Fehler beim Abrufen der Studie: {str(e)}"]
|
32 |
+
|
33 |
+
# Chatbot-Logik mit arXiv-Integration
|
34 |
+
def respond(
|
35 |
+
message,
|
36 |
+
history: list[tuple[str, str]],
|
37 |
+
system_message,
|
38 |
+
max_tokens,
|
39 |
+
temperature,
|
40 |
+
top_p,
|
41 |
+
sort_by,
|
42 |
+
sort_order,
|
43 |
+
max_results,
|
44 |
+
):
|
45 |
+
# Query generieren und Studien abrufen
|
46 |
+
query = generate_query(message)
|
47 |
+
study_summaries = fetch_arxiv_summary(query, sort_by, sort_order, max_results)
|
48 |
+
study_info = "\n".join(study_summaries)
|
49 |
+
|
50 |
+
# Nachrichten vorbereiten
|
51 |
+
messages = [{"role": "system", "content": system_message}]
|
52 |
+
for val in history:
|
53 |
+
if val[0]:
|
54 |
+
messages.append({"role": "user", "content": val[0]})
|
55 |
+
if val[1]:
|
56 |
+
messages.append({"role": "assistant", "content": val[1]})
|
57 |
+
|
58 |
+
messages.append({"role": "user", "content": f"{message}\nStudien-Info:\n{study_info}"})
|
59 |
+
|
60 |
+
# Antwort vom Modell generieren
|
61 |
+
response = ""
|
62 |
+
for message in client.chat_completion(
|
63 |
+
messages,
|
64 |
+
max_tokens=max_tokens,
|
65 |
+
stream=True,
|
66 |
+
temperature=temperature,
|
67 |
+
top_p=top_p,
|
68 |
+
):
|
69 |
+
token = message.choices[0].delta.content
|
70 |
+
response += token
|
71 |
+
yield response
|
72 |
+
|
73 |
+
# Gradio-Interface mit zusätzlichen Eingaben
|
74 |
+
demo = gr.ChatInterface(
|
75 |
+
respond,
|
76 |
+
additional_inputs=[
|
77 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
78 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
79 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
80 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
81 |
+
gr.Dropdown(label="Sortieren nach", choices=["relevance", "lastUpdatedDate", "submittedDate"], value="relevance"),
|
82 |
+
gr.Dropdown(label="Sortierreihenfolge", choices=["ascending", "descending"], value="descending"),
|
83 |
+
gr.Slider(label="Maximale Ergebnisse", minimum=1, maximum=50, value=20, step=1),
|
84 |
+
],
|
85 |
+
)
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
demo.launch()
|