Sebbe33 commited on
Commit
831828a
·
verified ·
1 Parent(s): f2c97e7

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +20 -30
  2. requirements.txt +0 -1
app.py CHANGED
@@ -2,22 +2,11 @@ import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  import urllib.request
4
  import xml.etree.ElementTree as ET
5
- from transformers import pipeline
6
 
7
  # HuggingFace Inference Client
8
  #client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct")
9
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
 
11
- # Hugging Face Pipeline für Named Entity Recognition (NER)
12
- nlp = pipeline("ner", model="dslim/bert-base-NER")
13
-
14
- # Funktion zur Extraktion von Keywords ohne Füllwörter
15
- def generate_query(input_text):
16
- entities = nlp(input_text)
17
- keywords = [entity['word'] for entity in entities if entity['entity_group'] in ['MISC', 'ORG', 'LOC', 'PER']]
18
- return " ".join(keywords).strip()
19
-
20
-
21
 
22
 
23
  # Funktion, um relevante Studien von arXiv zu suchen
@@ -81,25 +70,26 @@ def respond(
81
  yield response
82
 
83
  # Gradio-Interface mit zusätzlichen Eingaben
84
- def create_intro_text():
85
- return ("Willkommen beim Chatbot! Dieser Chatbot verwendet KI, um Ihre Fragen zu beantworten und relevante Studien "
86
- "aus der arXiv-Datenbank abzurufen. Geben Sie eine Frage ein, und der Bot liefert Ihnen basierend auf Ihrem "
87
- "Suchbegriff Studien mit Titel, Link und Zusammenfassung. Zusätzlich können Sie die Sortierung und maximale "
88
- "Anzahl der Ergebnisse anpassen.")
89
 
90
- demo = gr.ChatInterface(
91
- respond,
92
- additional_inputs=[
93
- gr.Textbox(value="You are helpful.", label="System message"),
94
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
95
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
96
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
97
- gr.Dropdown(label="Sortieren nach", choices=["relevance", "lastUpdatedDate", "submittedDate"], value="relevance"),
98
- gr.Dropdown(label="Sortierreihenfolge", choices=["ascending", "descending"], value="descending"),
99
- gr.Slider(label="Maximale Ergebnisse", minimum=1, maximum=50, value=20, step=1),
100
- ],
101
- description=create_intro_text()
102
- )
 
 
 
 
 
 
103
 
104
  if __name__ == "__main__":
105
- demo.launch()
 
2
  from huggingface_hub import InferenceClient
3
  import urllib.request
4
  import xml.etree.ElementTree as ET
 
5
 
6
  # HuggingFace Inference Client
7
  #client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct")
8
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
9
 
 
 
 
 
 
 
 
 
 
 
10
 
11
 
12
  # Funktion, um relevante Studien von arXiv zu suchen
 
70
  yield response
71
 
72
  # Gradio-Interface mit zusätzlichen Eingaben
 
 
 
 
 
73
 
74
+ with gr.Blocks() as demo:
75
+ gr.Markdown("""
76
+ ### Helloooooo
77
+ This chatbot uses AI to answer your questions and retrieve relevant studies from the arXiv database.
78
+ Enter your specific query in the field below, and the bot will provide you with studies including the title, link, and summary.
79
+ """)
80
+ query_input = gr.Textbox(value="", label="Query", placeholder="Enter your specific search term.")
81
+ chat_interface = gr.ChatInterface(
82
+ respond,
83
+ additional_inputs=[
84
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
85
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
86
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
87
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
88
+ gr.Dropdown(label="Sortieren nach", choices=["relevance", "lastUpdatedDate", "submittedDate"], value="relevance"),
89
+ gr.Dropdown(label="Sortierreihenfolge", choices=["ascending", "descending"], value="descending"),
90
+ gr.Slider(label="Maximale Ergebnisse", minimum=1, maximum=50, value=20, step=1),
91
+ ],
92
+ )
93
 
94
  if __name__ == "__main__":
95
+ demo.launch()
requirements.txt CHANGED
@@ -1,2 +1 @@
1
  huggingface_hub==0.25.2
2
- transformers
 
1
  huggingface_hub==0.25.2