Spaces:
Sleeping
Sleeping
import json | |
from pathlib import Path | |
import gradio as gr | |
import librosa | |
import numpy as np | |
import torch | |
from huggingface_hub import hf_hub_download, list_repo_files | |
from so_vits_svc_fork.hparams import HParams | |
from so_vits_svc_fork.inference.core import Svc | |
########################################################## | |
# REPLACE THESE VALUES TO CHANGE THE MODEL REPO/CKPT NAME | |
########################################################## | |
repo_id = "Shashashasha/simba" | |
ckpt_name = None # None will pick latest | |
########################################################## | |
# Figure out the latest generator by taking highest value one. | |
# Ex. if the repo has: G_0.pth, G_100.pth, G_200.pth, we'd use G_200.pth | |
if ckpt_name is None: | |
latest_id = sorted( | |
[ | |
int(Path(x).stem.split("_")[1]) | |
for x in list_repo_files(repo_id) | |
if x.startswith("G_") and x.endswith(".pth") | |
] | |
)[-1] | |
ckpt_name = f"G_{latest_id}.pth" | |
generator_path = hf_hub_download(repo_id, ckpt_name) | |
config_path = hf_hub_download(repo_id, "config.json") | |
hparams = HParams(**json.loads(Path(config_path).read_text())) | |
speakers = list(hparams.spk.keys()) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = Svc(net_g_path=generator_path, config_path=config_path, device=device, cluster_model_path=None) | |
def predict( | |
speaker, | |
audio, | |
transpose: int = 0, | |
auto_predict_f0: bool = False, | |
cluster_infer_ratio: float = 0, | |
noise_scale: float = 0.4, | |
f0_method: str = "crepe", | |
db_thresh: int = -40, | |
pad_seconds: float = 0.5, | |
chunk_seconds: float = 0.5, | |
absolute_thresh: bool = False, | |
): | |
audio, _ = librosa.load(audio, sr=model.target_sample) | |
audio = model.infer_silence( | |
audio.astype(np.float32), | |
speaker=speaker, | |
transpose=transpose, | |
auto_predict_f0=auto_predict_f0, | |
cluster_infer_ratio=cluster_infer_ratio, | |
noise_scale=noise_scale, | |
f0_method=f0_method, | |
db_thresh=db_thresh, | |
pad_seconds=pad_seconds, | |
chunk_seconds=chunk_seconds, | |
absolute_thresh=absolute_thresh, | |
) | |
return model.target_sample, audio | |
description=f""" | |
Это катя нейросеть! Настройки не крутите. А если вам пофиг крутите ломайте! | |
А что тут написать? | |
""".strip() | |
article=""" | |
<p style='text-align: center'> | |
<a href='https://github.com/voicepaw/so-vits-svc-fork' target='_blank'>Github Repo</a> | |
</p> | |
""".strip() | |
interface_mic = gr.Interface( | |
predict, | |
inputs=[ | |
gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"), | |
gr.Audio(type="filepath", source="microphone", label="Source Audio"), | |
gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"), | |
gr.Checkbox(False, label="Auto Predict F0"), | |
gr.Slider(0.0, 1.0, value=0.0, step=0.1, label='cluster infer ratio'), | |
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"), | |
gr.Dropdown(choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], value='crepe', label="f0 method"), | |
], | |
outputs="audio", | |
title="Voice Cloning", | |
description=description, | |
article=article, | |
) | |
interface_file = gr.Interface( | |
predict, | |
inputs=[ | |
gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"), | |
gr.Audio(type="filepath", source="upload", label="Source Audio"), | |
gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"), | |
gr.Checkbox(False, label="Auto Predict F0"), | |
gr.Slider(0.0, 1.0, value=0.0, step=0.1, label='cluster infer ratio'), | |
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"), | |
gr.Dropdown(choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], value='crepe', label="f0 method"), | |
], | |
outputs="audio", | |
title="Йоши Нейросеть", | |
description=description, | |
article=article, | |
) | |
interface = gr.TabbedInterface( | |
[interface_mic, interface_file], | |
["Микрофон", "Аудио файл"], | |
) | |
if __name__ == '__main__': | |
interface.launch() |