Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Create attention.py
Browse files- module/attention.py +257 -0
module/attention.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copy from diffusers.models.attention.py
|
2 |
+
|
3 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
from typing import Any, Dict, Optional
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from torch import nn
|
21 |
+
|
22 |
+
from diffusers.utils import deprecate, logging
|
23 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
24 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
25 |
+
from diffusers.models.attention_processor import Attention
|
26 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
27 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
|
28 |
+
|
29 |
+
from module.min_sdxl import LoRACompatibleLinear, LoRALinearLayer
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
def create_custom_forward(module):
|
35 |
+
def custom_forward(*inputs):
|
36 |
+
return module(*inputs)
|
37 |
+
|
38 |
+
return custom_forward
|
39 |
+
|
40 |
+
def maybe_grad_checkpoint(resnet, attn, hidden_states, temb, encoder_hidden_states, adapter_hidden_states, do_ckpt=True):
|
41 |
+
|
42 |
+
if do_ckpt:
|
43 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
44 |
+
hidden_states, extracted_kv = torch.utils.checkpoint.checkpoint(
|
45 |
+
create_custom_forward(attn), hidden_states, encoder_hidden_states, adapter_hidden_states, use_reentrant=False
|
46 |
+
)
|
47 |
+
else:
|
48 |
+
hidden_states = resnet(hidden_states, temb)
|
49 |
+
hidden_states, extracted_kv = attn(
|
50 |
+
hidden_states,
|
51 |
+
encoder_hidden_states=encoder_hidden_states,
|
52 |
+
adapter_hidden_states=adapter_hidden_states,
|
53 |
+
)
|
54 |
+
return hidden_states, extracted_kv
|
55 |
+
|
56 |
+
|
57 |
+
def init_lora_in_attn(attn_module, rank: int = 4, is_kvcopy=False):
|
58 |
+
# Set the `lora_layer` attribute of the attention-related matrices.
|
59 |
+
|
60 |
+
attn_module.to_k.set_lora_layer(
|
61 |
+
LoRALinearLayer(
|
62 |
+
in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=rank
|
63 |
+
)
|
64 |
+
)
|
65 |
+
attn_module.to_v.set_lora_layer(
|
66 |
+
LoRALinearLayer(
|
67 |
+
in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=rank
|
68 |
+
)
|
69 |
+
)
|
70 |
+
|
71 |
+
if not is_kvcopy:
|
72 |
+
attn_module.to_q.set_lora_layer(
|
73 |
+
LoRALinearLayer(
|
74 |
+
in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=rank
|
75 |
+
)
|
76 |
+
)
|
77 |
+
|
78 |
+
attn_module.to_out[0].set_lora_layer(
|
79 |
+
LoRALinearLayer(
|
80 |
+
in_features=attn_module.to_out[0].in_features,
|
81 |
+
out_features=attn_module.to_out[0].out_features,
|
82 |
+
rank=rank,
|
83 |
+
)
|
84 |
+
)
|
85 |
+
|
86 |
+
def drop_kvs(encoder_kvs, drop_chance):
|
87 |
+
for layer in encoder_kvs:
|
88 |
+
len_tokens = encoder_kvs[layer].self_attention.k.shape[1]
|
89 |
+
idx_to_keep = (torch.rand(len_tokens) > drop_chance)
|
90 |
+
|
91 |
+
encoder_kvs[layer].self_attention.k = encoder_kvs[layer].self_attention.k[:, idx_to_keep]
|
92 |
+
encoder_kvs[layer].self_attention.v = encoder_kvs[layer].self_attention.v[:, idx_to_keep]
|
93 |
+
|
94 |
+
return encoder_kvs
|
95 |
+
|
96 |
+
def clone_kvs(encoder_kvs):
|
97 |
+
cloned_kvs = {}
|
98 |
+
for layer in encoder_kvs:
|
99 |
+
sa_cpy = KVCache(k=encoder_kvs[layer].self_attention.k.clone(),
|
100 |
+
v=encoder_kvs[layer].self_attention.v.clone())
|
101 |
+
|
102 |
+
ca_cpy = KVCache(k=encoder_kvs[layer].cross_attention.k.clone(),
|
103 |
+
v=encoder_kvs[layer].cross_attention.v.clone())
|
104 |
+
|
105 |
+
cloned_layer_cache = AttentionCache(self_attention=sa_cpy, cross_attention=ca_cpy)
|
106 |
+
|
107 |
+
cloned_kvs[layer] = cloned_layer_cache
|
108 |
+
|
109 |
+
return cloned_kvs
|
110 |
+
|
111 |
+
|
112 |
+
class KVCache(object):
|
113 |
+
def __init__(self, k, v):
|
114 |
+
self.k = k
|
115 |
+
self.v = v
|
116 |
+
|
117 |
+
class AttentionCache(object):
|
118 |
+
def __init__(self, self_attention: KVCache, cross_attention: KVCache):
|
119 |
+
self.self_attention = self_attention
|
120 |
+
self.cross_attention = cross_attention
|
121 |
+
|
122 |
+
class KVCopy(nn.Module):
|
123 |
+
def __init__(
|
124 |
+
self, inner_dim, cross_attention_dim=None,
|
125 |
+
):
|
126 |
+
super(KVCopy, self).__init__()
|
127 |
+
|
128 |
+
in_dim = cross_attention_dim or inner_dim
|
129 |
+
|
130 |
+
self.to_k = LoRACompatibleLinear(in_dim, inner_dim, bias=False)
|
131 |
+
self.to_v = LoRACompatibleLinear(in_dim, inner_dim, bias=False)
|
132 |
+
|
133 |
+
def forward(self, hidden_states):
|
134 |
+
|
135 |
+
k = self.to_k(hidden_states)
|
136 |
+
v = self.to_v(hidden_states)
|
137 |
+
|
138 |
+
return KVCache(k=k, v=v)
|
139 |
+
|
140 |
+
def init_kv_copy(self, source_attn):
|
141 |
+
with torch.no_grad():
|
142 |
+
self.to_k.weight.copy_(source_attn.to_k.weight)
|
143 |
+
self.to_v.weight.copy_(source_attn.to_v.weight)
|
144 |
+
|
145 |
+
|
146 |
+
class FeedForward(nn.Module):
|
147 |
+
r"""
|
148 |
+
A feed-forward layer.
|
149 |
+
Parameters:
|
150 |
+
dim (`int`): The number of channels in the input.
|
151 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
152 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
153 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
154 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
155 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
156 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
157 |
+
"""
|
158 |
+
|
159 |
+
def __init__(
|
160 |
+
self,
|
161 |
+
dim: int,
|
162 |
+
dim_out: Optional[int] = None,
|
163 |
+
mult: int = 4,
|
164 |
+
dropout: float = 0.0,
|
165 |
+
activation_fn: str = "geglu",
|
166 |
+
final_dropout: bool = False,
|
167 |
+
inner_dim=None,
|
168 |
+
bias: bool = True,
|
169 |
+
):
|
170 |
+
super().__init__()
|
171 |
+
if inner_dim is None:
|
172 |
+
inner_dim = int(dim * mult)
|
173 |
+
dim_out = dim_out if dim_out is not None else dim
|
174 |
+
|
175 |
+
if activation_fn == "gelu":
|
176 |
+
act_fn = GELU(dim, inner_dim, bias=bias)
|
177 |
+
if activation_fn == "gelu-approximate":
|
178 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
179 |
+
elif activation_fn == "geglu":
|
180 |
+
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
181 |
+
elif activation_fn == "geglu-approximate":
|
182 |
+
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
183 |
+
|
184 |
+
self.net = nn.ModuleList([])
|
185 |
+
# project in
|
186 |
+
self.net.append(act_fn)
|
187 |
+
# project dropout
|
188 |
+
self.net.append(nn.Dropout(dropout))
|
189 |
+
# project out
|
190 |
+
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
|
191 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
192 |
+
if final_dropout:
|
193 |
+
self.net.append(nn.Dropout(dropout))
|
194 |
+
|
195 |
+
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
196 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
197 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
198 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
199 |
+
for module in self.net:
|
200 |
+
hidden_states = module(hidden_states)
|
201 |
+
return hidden_states
|
202 |
+
|
203 |
+
|
204 |
+
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
|
205 |
+
# "feed_forward_chunk_size" can be used to save memory
|
206 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
207 |
+
raise ValueError(
|
208 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
209 |
+
)
|
210 |
+
|
211 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
212 |
+
ff_output = torch.cat(
|
213 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
214 |
+
dim=chunk_dim,
|
215 |
+
)
|
216 |
+
return ff_output
|
217 |
+
|
218 |
+
|
219 |
+
@maybe_allow_in_graph
|
220 |
+
class GatedSelfAttentionDense(nn.Module):
|
221 |
+
r"""
|
222 |
+
A gated self-attention dense layer that combines visual features and object features.
|
223 |
+
Parameters:
|
224 |
+
query_dim (`int`): The number of channels in the query.
|
225 |
+
context_dim (`int`): The number of channels in the context.
|
226 |
+
n_heads (`int`): The number of heads to use for attention.
|
227 |
+
d_head (`int`): The number of channels in each head.
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
231 |
+
super().__init__()
|
232 |
+
|
233 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
234 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
235 |
+
|
236 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
237 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
238 |
+
|
239 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
240 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
241 |
+
|
242 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
243 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
244 |
+
|
245 |
+
self.enabled = True
|
246 |
+
|
247 |
+
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
248 |
+
if not self.enabled:
|
249 |
+
return x
|
250 |
+
|
251 |
+
n_visual = x.shape[1]
|
252 |
+
objs = self.linear(objs)
|
253 |
+
|
254 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
255 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
256 |
+
|
257 |
+
return x
|