SunderAli17 commited on
Commit
8a7c697
·
verified ·
1 Parent(s): f05464b

Create functions/app_with_diffusers.py

Browse files
Files changed (1) hide show
  1. functions/app_with_diffusers.py +125 -0
functions/app_with_diffusers.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import hf_hub_download
2
+
3
+ hf_hub_download(repo_id="SunderAli17/SAKBIR", filename="models/adapter.pt", local_dir=".")
4
+ hf_hub_download(repo_id="SunderAli17/SAKBIR", filename="models/aggregator.pt", local_dir=".")
5
+ hf_hub_download(repo_id="SunderAli17/SAKBIR", filename="models/previewer_lora_weights.bin", local_dir=".")
6
+
7
+ import torch
8
+ from PIL import Image
9
+
10
+ from diffusers import DDPMScheduler
11
+ from pipeline.lcm_single_step_scheduler import LCMSingleStepScheduler
12
+
13
+ from module.ip_adapter.utils import load_adapter_to_pipe
14
+ from pipelines.sdxl_SAKBIR import SAKBIRPipeline
15
+
16
+ def resize_img(input_image, max_side=1280, min_side=1024, size=None,
17
+ pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
18
+
19
+ w, h = input_image.size
20
+ if size is not None:
21
+ w_resize_new, h_resize_new = size
22
+ else:
23
+ # ratio = min_side / min(h, w)
24
+ # w, h = round(ratio*w), round(ratio*h)
25
+ ratio = max_side / max(h, w)
26
+ input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
27
+ w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
28
+ h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
29
+ input_image = input_image.resize([w_resize_new, h_resize_new], mode)
30
+
31
+ if pad_to_max_side:
32
+ res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
33
+ offset_x = (max_side - w_resize_new) // 2
34
+ offset_y = (max_side - h_resize_new) // 2
35
+ res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
36
+ input_image = Image.fromarray(res)
37
+ return input_image
38
+
39
+ # prepare models under ./models
40
+ instantir_path = f'./models'
41
+
42
+ # load pretrained models
43
+ pipe = InstantIRPipeline.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16)
44
+
45
+ # load adapter
46
+ load_adapter_to_pipe(
47
+ pipe,
48
+ f"{instantir_path}/adapter.pt",
49
+ image_encoder_or_path = 'facebook/dinov2-large',
50
+ )
51
+
52
+ # load previewer lora
53
+ pipe.prepare_previewers(instantir_path)
54
+ pipe.scheduler = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', subfolder="scheduler")
55
+ lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
56
+
57
+ # load aggregator weights
58
+ pretrained_state_dict = torch.load(f"{instantir_path}/aggregator.pt")
59
+ pipe.aggregator.load_state_dict(pretrained_state_dict)
60
+
61
+ # send to GPU and fp16
62
+ pipe.to(device='cuda', dtype=torch.float16)
63
+ pipe.aggregator.to(device='cuda', dtype=torch.float16)
64
+
65
+ PROMPT = "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, \
66
+ ultra HD, extreme meticulous detailing, skin pore detailing, \
67
+ hyper sharpness, perfect without deformations, \
68
+ taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. "
69
+
70
+ NEG_PROMPT = "blurry, out of focus, unclear, depth of field, over-smooth, \
71
+ sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, \
72
+ dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, \
73
+ watermark, signature, jpeg artifacts, deformed, lowres"
74
+
75
+ def infer(prompt, input_image, steps=30, cfg_scale=7.0, guidance_end=1.0,
76
+ creative_restoration=False, seed=3407, height=1024, width=1024):
77
+
78
+
79
+ # load a broken image
80
+ low_quality_image = Image.open(input_image).convert("RGB")
81
+
82
+ lq = [resize_img(low_quality_image, size=(width, height))]
83
+ generator = torch.Generator(device='cuda').manual_seed(seed)
84
+ timesteps = [
85
+ i * (1000//steps) + pipe.scheduler.config.steps_offset for i in range(0, steps)
86
+ ]
87
+ timesteps = timesteps[::-1]
88
+
89
+ prompt = PROMPT if len(prompt)==0 else prompt
90
+ neg_prompt = NEG_PROMPT
91
+
92
+ # InstantIR restoration
93
+ image = pipe(
94
+ prompt=[prompt]*len(lq),
95
+ image=lq,
96
+ num_inference_steps=steps,
97
+ generator=generator,
98
+ timesteps=timesteps,
99
+ negative_prompt=[neg_prompt]*len(lq),
100
+ guidance_scale=cfg_scale,
101
+ previewer_scheduler=lcm_scheduler,
102
+ ).images[0]
103
+
104
+ return image
105
+
106
+ import gradio as gr
107
+
108
+
109
+
110
+ with gr.Blocks() as demo:
111
+ with gr.Column():
112
+ with gr.Row():
113
+ with gr.Column():
114
+ lq_img = gr.Image(label="Low-quality image", type="filepath")
115
+ with gr.Group():
116
+ prompt = gr.Textbox(label="Prompt", value="")
117
+
118
+ submit_btn = gr.Button("InstantIR magic!")
119
+ output_img = gr.Image(label="InstantIR restored")
120
+ submit_btn.click(
121
+ fn=infer,
122
+ inputs=[prompt, lq_img],
123
+ outputs=[output_img]
124
+ )
125
+ demo.launch(show_error=True)