MEGA-Bench / utils.py
cccjc's picture
finetune header formats
1f300cb
import pandas as pd
import json
from typing import Dict, Any, Tuple
import os
from constants import (
MODEL_NAME_MAP,
DIMENSION_NAME_MAP,
KEYWORD_NAME_MAP,
MODEL_URLS,
BASE_MODEL_GROUPS
)
class MEGABenchEvalDataLoader:
def __init__(self, base_path):
self.base_path = base_path
# Load both model and summary data at once
self.KEYWORD_DATA, self.SUMMARY_DATA = self._load_data()
self.SUPER_GROUPS = self._initialize_super_groups()
self.MODEL_GROUPS = self._initialize_model_groups()
def _get_base_path(self) -> str:
raise NotImplementedError("Subclasses must implement _get_base_path")
def _load_data(self) -> Tuple[Dict[str, Any], Dict[str, Any]]:
summary_data = {}
keyword_data = {}
model_folders = [f for f in os.listdir(self.base_path) if os.path.isdir(os.path.join(self.base_path, f))]
for model_name in model_folders:
model_path = f"{self.base_path}/{model_name}/summary_and_keyword_stats.json"
with open(model_path, "r") as f:
data = json.load(f)
if "keyword_stats" in data:
keyword_data[model_name] = data["keyword_stats"]
if "model_summary" in data:
summary_data[model_name] = data["model_summary"]
return keyword_data, summary_data
def _initialize_super_groups(self):
# Get a sample model to access the structure
sample_model = next(iter(self.KEYWORD_DATA))
# Create groups with task counts
groups = {}
self.keyword_display_map = {} # Add this map to store display-to-original mapping
for dim in self.KEYWORD_DATA[sample_model]:
dim_name = DIMENSION_NAME_MAP[dim]
# Create a list of tuples (display_name, count, keyword) for sorting
keyword_info = []
for keyword in self.KEYWORD_DATA[sample_model][dim]:
# Get the task count for this keyword
task_count = self.KEYWORD_DATA[sample_model][dim][keyword]["count"]
original_name = KEYWORD_NAME_MAP.get(keyword, keyword)
display_name = f"{original_name}({task_count})"
keyword_info.append((display_name, task_count, keyword))
# Sort by count (descending) and then by display name (for ties)
keyword_info.sort(key=lambda x: (-x[1], x[0]))
# Store sorted display names and update mapping
groups[dim_name] = [info[0] for info in keyword_info]
for display_name, _, keyword in keyword_info:
self.keyword_display_map[display_name] = keyword
# Sort based on predefined order
order = ["Application", "Skills", "Output Format", "Input Format", "Visual Input Number"]
return {k: groups[k] for k in order if k in groups}
def _initialize_model_groups(self) -> Dict[str, list]:
available_models = set(self.KEYWORD_DATA.keys())
filtered_groups = {}
for group_name, models in BASE_MODEL_GROUPS.items():
if group_name == "All":
filtered_groups[group_name] = sorted(list(available_models))
else:
filtered_models = [model for model in models if model in available_models]
if filtered_models:
filtered_groups[group_name] = filtered_models
return filtered_groups
def get_df(self, selected_super_group: str, selected_model_group: str) -> pd.DataFrame:
original_dimension = get_original_dimension(selected_super_group)
data = []
for model in self.MODEL_GROUPS[selected_model_group]:
if model not in self.KEYWORD_DATA or model not in self.SUMMARY_DATA:
continue
model_data = self.KEYWORD_DATA[model]
summary = self.SUMMARY_DATA[model]
# Basic model information
row = {
"Models": get_display_model_name(model, as_link=True),
"Overall": round(summary["overall_score"] * 100, 2),
"Core": round(summary["core"]["macro_mean_score"] * 100, 2),
"Open-ended": round(summary["open"]["macro_mean_score"] * 100, 2)
}
# Add dimension-specific scores
if original_dimension in model_data:
for display_name in self.SUPER_GROUPS[selected_super_group]:
original_keyword = self.keyword_display_map[display_name]
if original_keyword in model_data[original_dimension]:
row[display_name] = round(model_data[original_dimension][original_keyword]["average_score"] * 100, 2)
else:
row[display_name] = None
else:
for display_name in self.SUPER_GROUPS[selected_super_group]:
row[display_name] = None
data.append(row)
df = pd.DataFrame(data)
df = df.sort_values(by="Overall", ascending=False)
return df
def get_leaderboard_data(self, selected_super_group: str, selected_model_group: str) -> Tuple[list, list]:
df = self.get_df(selected_super_group, selected_model_group)
# Get total task counts from the first model's data
sample_model = "GPT_4o"
total_core_tasks = self.SUMMARY_DATA[sample_model]["core"]["num_eval_tasks"]
total_open_tasks = self.SUMMARY_DATA[sample_model]["open"]["num_eval_tasks"]
total_tasks = total_core_tasks + total_open_tasks
# Define headers with task counts on new line using Unicode line break
column_headers = {
"Rank": "Rank",
"Models": "Models",
"Overall": f"Overall\n({total_tasks})",
"Core": f"Core\n({total_core_tasks})",
"Open-ended": f"Open-ended\n({total_open_tasks})"
}
# Add rank column to DataFrame
df = df.reset_index(drop=True)
df.insert(0, 'Rank', range(1, len(df) + 1))
# Rename the columns in DataFrame to match headers
df = df.rename(columns=column_headers)
# For dimension columns, add task counts on new line
dimension_headers = []
for display_name in self.SUPER_GROUPS[selected_super_group]:
task_count = display_name.split('(')[1].rstrip(')')
base_name = display_name.split('(')[0]
dimension_headers.append(f"{base_name}\n({task_count})")
headers = [
column_headers["Rank"],
column_headers["Models"],
column_headers["Overall"],
column_headers["Core"],
column_headers["Open-ended"]
] + dimension_headers
data = df[[
column_headers["Rank"],
column_headers["Models"],
column_headers["Overall"],
column_headers["Core"],
column_headers["Open-ended"]
] + self.SUPER_GROUPS[selected_super_group]].values.tolist()
return headers, data
# Keep your helper functions
def get_original_dimension(mapped_dimension):
return next(k for k, v in DIMENSION_NAME_MAP.items() if v == mapped_dimension)
def get_original_keyword(mapped_keyword):
return next((k for k, v in KEYWORD_NAME_MAP.items() if v == mapped_keyword), mapped_keyword)
def get_display_model_name(model_name: str, as_link: bool = True) -> str:
display_name = MODEL_NAME_MAP.get(model_name, model_name)
if as_link and model_name in MODEL_URLS:
return f'<a href="{MODEL_URLS[model_name]}" target="_blank" style="text-decoration: none; color: #2196F3;">{display_name}</a>'
return display_name