CreateBook / app.py
TeacherPuffy's picture
Update app.py
23c71d8 verified
import gradio as gr
from gradio_client import Client
from huggingface_hub import HfApi
import logging
import time
import os
# Set up logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Function to call the API and get the result
def call_api(prompt):
try:
# Reload the Gradio client for each chunk
client = Client("MiniMaxAI/MiniMax-Text-01")
logger.info(f"Calling API with prompt: {prompt[:100]}...") # Log the first 100 chars of the prompt
result = client.predict(
message=prompt,
max_tokens=12800,
temperature=0.1,
top_p=0.9,
api_name="/chat"
)
logger.info("API call successful.")
return result
except Exception as e:
logger.error(f"API call failed: {e}")
raise gr.Error(f"API call failed: {str(e)}")
# Function to segment the text into chunks of 1500 words
def segment_text(text):
# Split the text into chunks of 1500 words
words = text.split()
chunks = [" ".join(words[i:i + 1500]) for i in range(0, len(words), 1250)]
logger.info(f"Segmented text into {len(chunks)} chunks.")
return chunks
# Function to read file content with fallback encoding
def read_file_content(file):
try:
# Try reading with UTF-8 encoding first
if hasattr(file, "read"):
content = file.read().decode('utf-8')
else:
content = file.decode('utf-8')
logger.info("File read successfully with UTF-8 encoding.")
return content
except UnicodeDecodeError:
# Fallback to latin-1 encoding if UTF-8 fails
logger.warning("UTF-8 encoding failed. Trying latin-1 encoding.")
if hasattr(file, "read"):
file.seek(0) # Reset file pointer to the beginning
content = file.read().decode('latin-1')
else:
content = file.decode('latin-1')
logger.info("File read successfully with latin-1 encoding.")
return content
except Exception as e:
logger.error(f"Failed to read file: {e}")
raise gr.Error(f"Failed to read file: {str(e)}")
# Function to process the text and make API calls with rate limiting
def process_text(file, prompt):
try:
logger.info("Starting text processing...")
# Read the file content with fallback encoding
text = read_file_content(file)
logger.info(f"Text length: {len(text)} characters.")
# Segment the text into chunks
chunks = segment_text(text)
# Initialize Hugging Face API
hf_api = HfApi(token=os.environ.get("HUGGINGFACE_TOKEN"))
if not hf_api.token:
raise ValueError("Hugging Face token not found in environment variables.")
# Repository name on Hugging Face Hub
repo_name = "TeacherPuffy/book2"
# Process each chunk with a 15-second delay between API calls
results = []
for idx, chunk in enumerate(chunks):
logger.info(f"Processing chunk {idx + 1}/{len(chunks)}")
try:
# Call the API
result = call_api(f"{prompt}\n\n{chunk}")
results.append(result)
logger.info(f"Chunk {idx + 1} processed successfully.")
# Upload the chunk directly to Hugging Face
try:
logger.info(f"Uploading chunk {idx + 1} to Hugging Face...")
hf_api.upload_file(
path_or_fileobj=result.encode('utf-8'), # Convert result to bytes
path_in_repo=f"output_{idx}.txt", # File name in the repository
repo_id=repo_name,
repo_type="dataset",
)
logger.info(f"Chunk {idx + 1} uploaded to Hugging Face successfully.")
except Exception as e:
logger.error(f"Failed to upload chunk {idx + 1} to Hugging Face: {e}")
raise gr.Error(f"Failed to upload chunk {idx + 1} to Hugging Face: {str(e)}")
# Wait 15 seconds before the next API call
if idx < len(chunks) - 1: # No need to wait after the last chunk
logger.info("Waiting 15 seconds before the next API call...")
time.sleep(15)
except Exception as e:
logger.error(f"Failed to process chunk {idx + 1}: {e}")
raise gr.Error(f"Failed to process chunk {idx + 1}: {str(e)}")
return "All chunks processed and uploaded to Hugging Face."
except Exception as e:
logger.error(f"An error occurred during processing: {e}")
raise gr.Error(f"An error occurred: {str(e)}")
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Text File Processor with Rate-Limited API Calls")
with gr.Row():
file_input = gr.File(label="Upload Text File")
prompt_input = gr.Textbox(label="Enter Prompt")
with gr.Row():
output_message = gr.Textbox(label="Status Message")
submit_button = gr.Button("Submit")
submit_button.click(
process_text,
inputs=[file_input, prompt_input],
outputs=[output_message]
)
# Launch the Gradio app with a public link
demo.launch(share=True)