TeacherPuffy commited on
Commit
0241b66
·
verified ·
1 Parent(s): 0f4b7f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -24
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import gradio as gr
2
  from gradio_client import Client
3
- import os
4
  import logging
5
  import time # Import time module for adding delays
6
 
@@ -27,38 +27,32 @@ def call_api(prompt):
27
  logger.error(f"API call failed: {e}")
28
  raise gr.Error(f"API call failed: {str(e)}")
29
 
30
- # Function to segment the text file into chunks of 1500 words
31
- def segment_text(file_path):
32
- try:
33
- logger.info(f"Reading file: {file_path}")
34
- # Try reading with UTF-8 encoding first
35
- with open(file_path, "r", encoding="utf-8") as f:
36
- text = f.read()
37
- logger.info("File read successfully with UTF-8 encoding.")
38
- except UnicodeDecodeError:
39
- logger.warning("UTF-8 encoding failed. Trying latin-1 encoding.")
40
- # Fallback to latin-1 encoding if UTF-8 fails
41
- with open(file_path, "r", encoding="latin-1") as f:
42
- text = f.read()
43
- logger.info("File read successfully with latin-1 encoding.")
44
- except Exception as e:
45
- logger.error(f"Failed to read file: {e}")
46
- raise gr.Error(f"Failed to read file: {str(e)}")
47
-
48
  # Split the text into chunks of 1500 words
49
  words = text.split()
50
  chunks = [" ".join(words[i:i + 1500]) for i in range(0, len(words), 1250)]
51
  logger.info(f"Segmented text into {len(chunks)} chunks.")
52
  return chunks
53
 
54
- # Function to process the text file and make API calls with rate limiting
55
  def process_text(file, prompt):
56
  try:
57
  logger.info("Starting text processing...")
58
 
59
- # Segment the text file into chunks
60
- file_path = file.name if hasattr(file, "name") else file
61
- chunks = segment_text(file_path)
 
 
 
 
 
 
 
 
 
 
62
 
63
  # Process each chunk with a 15-second delay between API calls
64
  results = []
@@ -70,6 +64,20 @@ def process_text(file, prompt):
70
  results.append(result)
71
  logger.info(f"Chunk {idx + 1} processed successfully.")
72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  # Wait 15 seconds before the next API call
74
  if idx < len(chunks) - 1: # No need to wait after the last chunk
75
  logger.info("Waiting 15 seconds before the next API call...")
@@ -79,7 +87,7 @@ def process_text(file, prompt):
79
  logger.error(f"Failed to process chunk {idx + 1}: {e}")
80
  raise gr.Error(f"Failed to process chunk {idx + 1}: {str(e)}")
81
 
82
- return "All chunks processed successfully."
83
 
84
  except Exception as e:
85
  logger.error(f"An error occurred during processing: {e}")
 
1
  import gradio as gr
2
  from gradio_client import Client
3
+ from huggingface_hub import HfApi
4
  import logging
5
  import time # Import time module for adding delays
6
 
 
27
  logger.error(f"API call failed: {e}")
28
  raise gr.Error(f"API call failed: {str(e)}")
29
 
30
+ # Function to segment the text into chunks of 1500 words
31
+ def segment_text(text):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  # Split the text into chunks of 1500 words
33
  words = text.split()
34
  chunks = [" ".join(words[i:i + 1500]) for i in range(0, len(words), 1250)]
35
  logger.info(f"Segmented text into {len(chunks)} chunks.")
36
  return chunks
37
 
38
+ # Function to process the text and make API calls with rate limiting
39
  def process_text(file, prompt):
40
  try:
41
  logger.info("Starting text processing...")
42
 
43
+ # Read the text directly from the uploaded file
44
+ text = file.decode('utf-8') # Assuming the file is encoded in UTF-8
45
+
46
+ # Segment the text into chunks
47
+ chunks = segment_text(text)
48
+
49
+ # Initialize Hugging Face API
50
+ hf_api = HfApi(token=os.environ.get("HUGGINGFACE_TOKEN"))
51
+ if not hf_api.token:
52
+ raise ValueError("Hugging Face token not found in environment variables.")
53
+
54
+ # Repository name on Hugging Face Hub
55
+ repo_name = "TeacherPuffy/book2"
56
 
57
  # Process each chunk with a 15-second delay between API calls
58
  results = []
 
64
  results.append(result)
65
  logger.info(f"Chunk {idx + 1} processed successfully.")
66
 
67
+ # Upload the chunk directly to Hugging Face
68
+ try:
69
+ logger.info(f"Uploading chunk {idx + 1} to Hugging Face...")
70
+ hf_api.upload_file(
71
+ path_or_fileobj=result.encode('utf-8'), # Convert result to bytes
72
+ path_in_repo=f"output_{idx}.txt", # File name in the repository
73
+ repo_id=repo_name,
74
+ repo_type="dataset",
75
+ )
76
+ logger.info(f"Chunk {idx + 1} uploaded to Hugging Face successfully.")
77
+ except Exception as e:
78
+ logger.error(f"Failed to upload chunk {idx + 1} to Hugging Face: {e}")
79
+ raise gr.Error(f"Failed to upload chunk {idx + 1} to Hugging Face: {str(e)}")
80
+
81
  # Wait 15 seconds before the next API call
82
  if idx < len(chunks) - 1: # No need to wait after the last chunk
83
  logger.info("Waiting 15 seconds before the next API call...")
 
87
  logger.error(f"Failed to process chunk {idx + 1}: {e}")
88
  raise gr.Error(f"Failed to process chunk {idx + 1}: {str(e)}")
89
 
90
+ return "All chunks processed and uploaded to Hugging Face."
91
 
92
  except Exception as e:
93
  logger.error(f"An error occurred during processing: {e}")