Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
3 |
+
from tqdm.auto import tqdm
|
4 |
+
from huggingface_hub import cached_download, hf_hub_url
|
5 |
+
import os
|
6 |
+
|
7 |
+
def display_image(image):
|
8 |
+
"""
|
9 |
+
Replace this with your actual image display logic.
|
10 |
+
"""
|
11 |
+
image.show()
|
12 |
+
|
13 |
+
def load_and_merge_lora(base_model_id, lora_id, lora_weight_name, lora_adapter_name):
|
14 |
+
try:
|
15 |
+
pipe = DiffusionPipeline.from_pretrained(
|
16 |
+
base_model_id,
|
17 |
+
torch_dtype=torch.float16,
|
18 |
+
scheduler=DPMSolverMultistepScheduler.from_config(
|
19 |
+
pipe.scheduler.config),
|
20 |
+
variant="fp16",
|
21 |
+
use_safetensors=True,
|
22 |
+
).to("cuda")
|
23 |
+
|
24 |
+
lora_url = hf_hub_url(lora_id, revision="main", filename=lora_weight_name)
|
25 |
+
lora_path = cached_download(lora_url)
|
26 |
+
|
27 |
+
with tqdm(desc="Loading LoRA weights", unit="step") as pbar:
|
28 |
+
pipe.load_lora_weights(
|
29 |
+
lora_path,
|
30 |
+
weight_name=lora_weight_name,
|
31 |
+
adapter_name=lora_adapter_name,
|
32 |
+
progress_callback=lambda step, max_steps: pbar.update(1)
|
33 |
+
)
|
34 |
+
|
35 |
+
print("LoRA merged successfully!")
|
36 |
+
return pipe
|
37 |
+
except Exception as e:
|
38 |
+
print(f"Error merging LoRA: {e}")
|
39 |
+
return None
|
40 |
+
|
41 |
+
def save_merged_model(pipe, save_path):
|
42 |
+
"""Saves the merged model to the specified path."""
|
43 |
+
try:
|
44 |
+
pipe.save_pretrained(save_path)
|
45 |
+
print(f"Merged model saved successfully to: {save_path}")
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error saving the merged model: {e}")
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
base_model_id = input("Enter the base model ID: ")
|
51 |
+
lora_id = input("Enter the LoRA Hugging Face Hub ID: ")
|
52 |
+
lora_weight_name = input("Enter the LoRA weight file name: ")
|
53 |
+
lora_adapter_name = input("Enter the LoRA adapter name: ")
|
54 |
+
|
55 |
+
pipe = load_and_merge_lora(base_model_id, lora_id, lora_weight_name, lora_adapter_name)
|
56 |
+
|
57 |
+
if pipe:
|
58 |
+
prompt = input("Enter your prompt: ")
|
59 |
+
lora_scale = float(input("Enter the LoRA scale (e.g., 0.9): "))
|
60 |
+
|
61 |
+
image = pipe(
|
62 |
+
prompt,
|
63 |
+
num_inference_steps=30,
|
64 |
+
cross_attention_kwargs={"scale": lora_scale},
|
65 |
+
generator=torch.manual_seed(0)
|
66 |
+
).images[0]
|
67 |
+
|
68 |
+
display_image(image)
|
69 |
+
|
70 |
+
# Ask the user for a directory to save the model
|
71 |
+
save_path = input(
|
72 |
+
"Enter the directory where you want to save the merged model: "
|
73 |
+
)
|
74 |
+
save_merged_model(pipe, save_path)
|