TeamQwen2AudioInstruct / eval_audio /evaluate_vocal_sound.py
j
first commit
2e37cc0
import argparse
import itertools
import json
import os
import random
import time
from functools import partial
import torch
import requests
from tqdm import tqdm
from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration
from transformers.pipelines.audio_utils import ffmpeg_read
from sklearn.metrics import accuracy_score
ds_collections = {
'vocalsound': {'path': 'vsc/vocalsound_eval.jsonl'}
}
class AudioDataset(torch.utils.data.Dataset):
def __init__(self, ds):
path = ds['path']
self.datas = open(path).readlines()
def __len__(self):
return len(self.datas)
def __getitem__(self, idx):
data = json.loads(self.datas[idx].strip())
audio = data['audio']
source = data['source']
prompt = "<|audio_bos|><|AUDIO|><|audio_eos|>"+data['prompt']
gt = data['gt']
return {
'audio': audio,
'prompt': prompt,
'source': source,
'gt': gt
}
def read_audio(audio_path):
if audio_path.startswith("http://") or audio_path.startswith("https://"):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
inputs = requests.get(audio_path).content
else:
with open(audio_path, "rb") as f:
inputs = f.read()
return inputs
def collate_fn(inputs, processor):
input_texts = [_['prompt'] for _ in inputs]
source = [_['source'] for _ in inputs]
gt = [_['gt'] for _ in inputs]
audio_path = [_['audio'] for _ in inputs]
input_audios = [ffmpeg_read(read_audio(_['audio']),sampling_rate=processor.feature_extractor.sampling_rate) for _ in inputs]
inputs = processor(text=input_texts, audios=input_audios, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt", padding=True)
return inputs, audio_path, source, gt
class InferenceSampler(torch.utils.data.sampler.Sampler):
def __init__(self, size):
self._size = int(size)
assert size > 0
self._rank = torch.distributed.get_rank()
self._world_size = torch.distributed.get_world_size()
self._local_indices = self._get_local_indices(size, self._world_size,
self._rank)
@staticmethod
def _get_local_indices(total_size, world_size, rank):
shard_size = total_size // world_size
left = total_size % world_size
shard_sizes = [shard_size + int(r < left) for r in range(world_size)]
begin = sum(shard_sizes[:rank])
end = min(sum(shard_sizes[:rank + 1]), total_size)
return range(begin, end)
def __iter__(self):
yield from self._local_indices
def __len__(self):
return len(self._local_indices)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str, default='Qwen/Qwen2-Audio-7B')
parser.add_argument('--dataset', type=str, default='')
parser.add_argument('--batch-size', type=int, default=1)
parser.add_argument('--num-workers', type=int, default=1)
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
torch.distributed.init_process_group(
backend='nccl',
world_size=int(os.getenv('WORLD_SIZE', '1')),
rank=int(os.getenv('RANK', '0')),
)
torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))
model = Qwen2AudioForConditionalGeneration.from_pretrained(
args.checkpoint, device_map='cuda', trust_remote_code=True, torch_dtype='auto').eval()
processor = AutoProcessor.from_pretrained(args.checkpoint)
processor.tokenizer.padding_side = 'left'
random.seed(args.seed)
dataset = AudioDataset(
ds=ds_collections[args.dataset],
)
data_loader = torch.utils.data.DataLoader(
dataset=dataset,
sampler=InferenceSampler(len(dataset)),
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
collate_fn=partial(collate_fn, processor=processor),
)
gts = []
sources = []
rets = []
audio_paths = []
for _, (inputs, audio_path, source, gt) in tqdm(enumerate(data_loader)):
inputs['input_ids'] = inputs['input_ids'].to('cuda')
output_ids = model.generate(**inputs, max_new_tokens=256, min_new_tokens=1, do_sample=False)
output_ids = output_ids[:, inputs.input_ids.size(1):]
output = processor.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
gts.extend(gt)
rets.extend(output)
sources.extend(source)
audio_paths.extend(audio_path)
torch.distributed.barrier()
world_size = torch.distributed.get_world_size()
merged_gts = [None for _ in range(world_size)]
merged_sources = [None for _ in range(world_size)]
merged_responses = [None for _ in range(world_size)]
merged_audio_paths = [None for _ in range(world_size)]
torch.distributed.all_gather_object(merged_gts, gts)
torch.distributed.all_gather_object(merged_sources, sources)
torch.distributed.all_gather_object(merged_responses, rets)
torch.distributed.all_gather_object(merged_audio_paths, audio_paths)
merged_gts = [_ for _ in itertools.chain.from_iterable(merged_gts)]
merged_sources = [_ for _ in itertools.chain.from_iterable(merged_sources)]
merged_audio_paths = [_ for _ in itertools.chain.from_iterable(merged_audio_paths)]
merged_responses = [
_ for _ in itertools.chain.from_iterable(merged_responses)
]
if torch.distributed.get_rank() == 0:
print(f"Evaluating {args.dataset} ...")
results = []
for gt, response, source, audio_path in zip(merged_gts, merged_responses, merged_sources, merged_audio_paths):
results.append({
'gt': gt,
'response': response,
'source': source,
'audio_path': audio_path,
})
time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime())
results_file = f'{args.dataset}_{time_prefix}.json'
json.dump(results, open(results_file, 'w'))
results_dict = {}
for item in tqdm(results):
source = item["source"]
results_dict.setdefault(source, []).append(item)
for source in results_dict:
refs, hyps = [], []
bi_refs, bi_hyps = [], []
results_list = results_dict[source]
for result in results_list:
gt = result["gt"]
response = result["response"].lstrip()
refs.append(gt)
hyps.append(response)
score = accuracy_score(refs, hyps)
print(f"{source} ACC_score:", score, len(hyps))
torch.distributed.barrier()