hysts HF staff commited on
Commit
ae76338
·
1 Parent(s): a679a71
Files changed (3) hide show
  1. README.md +1 -1
  2. app.py +33 -14
  3. requirements.txt +3 -2
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🚀
4
  colorFrom: blue
5
  colorTo: purple
6
  sdk: gradio
7
- sdk_version: 3.42.0
8
  app_file: app.py
9
  pinned: false
10
  ---
 
4
  colorFrom: blue
5
  colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 3.43.1
8
  app_file: app.py
9
  pinned: false
10
  ---
app.py CHANGED
@@ -21,6 +21,11 @@ if not torch.cuda.is_available():
21
  DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
22
 
23
  style_list = [
 
 
 
 
 
24
  {
25
  "name": "Cinematic",
26
  "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
@@ -56,16 +61,25 @@ style_list = [
56
  "prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
57
  "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
58
  },
 
 
 
 
 
 
 
 
 
 
59
  ]
60
 
61
  styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
62
- default_style_name = "Photographic"
63
- default_style = styles[default_style_name]
64
- style_names = list(styles.keys())
65
 
66
 
67
  def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
68
- p, n = styles.get(style_name, default_style)
69
  return p.replace("{prompt}", positive), n + negative
70
 
71
 
@@ -101,12 +115,13 @@ def run(
101
  image: PIL.Image.Image,
102
  prompt: str,
103
  negative_prompt: str,
104
- style_name: str = default_style_name,
105
  num_steps: int = 25,
106
  guidance_scale: float = 5,
107
  adapter_conditioning_scale: float = 0.8,
108
- cond_tau: float = 0.8,
109
  seed: int = 0,
 
110
  ) -> PIL.Image.Image:
111
  image = image.convert("RGB")
112
  image = TF.to_tensor(image) > 0.5
@@ -123,7 +138,7 @@ def run(
123
  generator=generator,
124
  guidance_scale=guidance_scale,
125
  adapter_conditioning_scale=adapter_conditioning_scale,
126
- cond_tau=cond_tau,
127
  ).images[0]
128
  return out
129
 
@@ -150,10 +165,13 @@ with gr.Blocks(css="style.css") as demo:
150
  height=600,
151
  )
152
  prompt = gr.Textbox(label="Prompt")
 
153
  run_button = gr.Button("Run")
154
  with gr.Accordion("Advanced options", open=False):
155
- style = gr.Dropdown(choices=style_names, value=default_style_name, label="Style")
156
- negative_prompt = gr.Textbox(label="Negative prompt")
 
 
157
  num_steps = gr.Slider(
158
  label="Number of steps",
159
  minimum=1,
@@ -169,14 +187,15 @@ with gr.Blocks(css="style.css") as demo:
169
  value=5,
170
  )
171
  adapter_conditioning_scale = gr.Slider(
172
- label="Adapter Conditioning Scale",
173
  minimum=0.5,
174
  maximum=1,
175
  step=0.1,
176
  value=0.8,
177
  )
178
- cond_tau = gr.Slider(
179
- label="Fraction of timesteps for which adapter should be applied",
 
180
  minimum=0.5,
181
  maximum=1,
182
  step=0.1,
@@ -201,7 +220,7 @@ with gr.Blocks(css="style.css") as demo:
201
  num_steps,
202
  guidance_scale,
203
  adapter_conditioning_scale,
204
- cond_tau,
205
  seed,
206
  ]
207
  prompt.submit(
@@ -238,7 +257,7 @@ with gr.Blocks(css="style.css") as demo:
238
  fn=run,
239
  inputs=inputs,
240
  outputs=result,
241
- api_name="run",
242
  )
243
 
244
  if __name__ == "__main__":
 
21
  DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
22
 
23
  style_list = [
24
+ {
25
+ "name": "(No style)",
26
+ "prompt": "{prompt}",
27
+ "negative_prompt": "",
28
+ },
29
  {
30
  "name": "Cinematic",
31
  "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
 
61
  "prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
62
  "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
63
  },
64
+ {
65
+ "name": "Neonpunk",
66
+ "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
67
+ "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
68
+ },
69
+ {
70
+ "name": "Manga",
71
+ "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
72
+ "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
73
+ },
74
  ]
75
 
76
  styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
77
+ STYLE_NAMES = list(styles.keys())
78
+ DEFAULT_STYLE_NAME = "(No style)"
 
79
 
80
 
81
  def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
82
+ p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
83
  return p.replace("{prompt}", positive), n + negative
84
 
85
 
 
115
  image: PIL.Image.Image,
116
  prompt: str,
117
  negative_prompt: str,
118
+ style_name: str = DEFAULT_STYLE_NAME,
119
  num_steps: int = 25,
120
  guidance_scale: float = 5,
121
  adapter_conditioning_scale: float = 0.8,
122
+ adapter_conditioning_factor: float = 0.8,
123
  seed: int = 0,
124
+ progress=gr.Progress(track_tqdm=True),
125
  ) -> PIL.Image.Image:
126
  image = image.convert("RGB")
127
  image = TF.to_tensor(image) > 0.5
 
138
  generator=generator,
139
  guidance_scale=guidance_scale,
140
  adapter_conditioning_scale=adapter_conditioning_scale,
141
+ adapter_conditioning_factor=adapter_conditioning_factor,
142
  ).images[0]
143
  return out
144
 
 
165
  height=600,
166
  )
167
  prompt = gr.Textbox(label="Prompt")
168
+ style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
169
  run_button = gr.Button("Run")
170
  with gr.Accordion("Advanced options", open=False):
171
+ negative_prompt = gr.Textbox(
172
+ label="Negative prompt",
173
+ value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured",
174
+ )
175
  num_steps = gr.Slider(
176
  label="Number of steps",
177
  minimum=1,
 
187
  value=5,
188
  )
189
  adapter_conditioning_scale = gr.Slider(
190
+ label="Adapter conditioning scale",
191
  minimum=0.5,
192
  maximum=1,
193
  step=0.1,
194
  value=0.8,
195
  )
196
+ adapter_conditioning_factor = gr.Slider(
197
+ label="Adapter conditioning factor",
198
+ info="Fraction of timesteps for which adapter should be applied",
199
  minimum=0.5,
200
  maximum=1,
201
  step=0.1,
 
220
  num_steps,
221
  guidance_scale,
222
  adapter_conditioning_scale,
223
+ adapter_conditioning_factor,
224
  seed,
225
  ]
226
  prompt.submit(
 
257
  fn=run,
258
  inputs=inputs,
259
  outputs=result,
260
+ api_name=False,
261
  )
262
 
263
  if __name__ == "__main__":
requirements.txt CHANGED
@@ -1,8 +1,9 @@
1
  accelerate==0.22.0
2
  git+https://github.com/huggingface/diffusers@t2iadapterxl
3
- gradio==3.42.0
4
  Pillow==10.0.0
5
  safetensors==0.3.3
6
  torch==2.0.1
7
  torchvision==0.15.2
8
- transformers==4.33.0
 
 
1
  accelerate==0.22.0
2
  git+https://github.com/huggingface/diffusers@t2iadapterxl
3
+ gradio==3.43.1
4
  Pillow==10.0.0
5
  safetensors==0.3.3
6
  torch==2.0.1
7
  torchvision==0.15.2
8
+ transformers==4.33.1
9
+ xformers==0.0.20