Spaces:
Running
on
L4
Running
on
L4
Merge sketch app
Browse filesCo-authored-by: Suraj Patil <[email protected]>
- app.py +7 -139
- app_base.py +145 -0
- app_sketch.py +206 -0
- model.py +2 -4
- utils.py +11 -0
app.py
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
|
3 |
import os
|
4 |
-
import random
|
5 |
|
6 |
import gradio as gr
|
7 |
-
import numpy as np
|
8 |
-
import PIL.Image
|
9 |
import torch
|
10 |
|
|
|
|
|
11 |
from model import ADAPTER_NAMES, Model
|
12 |
|
13 |
DESCRIPTION = "# T2I-Adapter-SDXL"
|
@@ -15,45 +14,10 @@ DESCRIPTION = "# T2I-Adapter-SDXL"
|
|
15 |
if not torch.cuda.is_available():
|
16 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
17 |
|
18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
|
20 |
-
|
21 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
22 |
-
if randomize_seed:
|
23 |
-
seed = random.randint(0, MAX_SEED)
|
24 |
-
return seed
|
25 |
-
|
26 |
|
27 |
model = Model(ADAPTER_NAMES[0])
|
28 |
|
29 |
|
30 |
-
def run(
|
31 |
-
image: PIL.Image.Image,
|
32 |
-
prompt: str,
|
33 |
-
negative_prompt: str,
|
34 |
-
adapter_name: str,
|
35 |
-
num_inference_steps: int = 30,
|
36 |
-
guidance_scale: float = 5.0,
|
37 |
-
adapter_conditioning_scale: float = 1.0,
|
38 |
-
cond_tau: float = 1.0,
|
39 |
-
seed: int = 0,
|
40 |
-
apply_preprocess: bool = True,
|
41 |
-
progress=gr.Progress(track_tqdm=True),
|
42 |
-
) -> list[PIL.Image.Image]:
|
43 |
-
return model.run(
|
44 |
-
image=image,
|
45 |
-
prompt=prompt,
|
46 |
-
negative_prompt=negative_prompt,
|
47 |
-
adapter_name=adapter_name,
|
48 |
-
num_inference_steps=num_inference_steps,
|
49 |
-
guidance_scale=guidance_scale,
|
50 |
-
adapter_conditioning_scale=adapter_conditioning_scale,
|
51 |
-
cond_tau=cond_tau,
|
52 |
-
seed=seed,
|
53 |
-
apply_preprocess=apply_preprocess,
|
54 |
-
)
|
55 |
-
|
56 |
-
|
57 |
with gr.Blocks(css="style.css") as demo:
|
58 |
gr.Markdown(DESCRIPTION)
|
59 |
gr.DuplicateButton(
|
@@ -61,107 +25,11 @@ with gr.Blocks(css="style.css") as demo:
|
|
61 |
elem_id="duplicate-button",
|
62 |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
63 |
)
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
prompt = gr.Textbox(label="Prompt")
|
70 |
-
adapter_name = gr.Dropdown(label="Adapter", choices=ADAPTER_NAMES, value=ADAPTER_NAMES[0])
|
71 |
-
run_button = gr.Button("Run")
|
72 |
-
with gr.Accordion("Advanced options", open=False):
|
73 |
-
apply_preprocess = gr.Checkbox(label="Apply preprocess", value=True)
|
74 |
-
negative_prompt = gr.Textbox(
|
75 |
-
label="Negative prompt",
|
76 |
-
value="anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
77 |
-
)
|
78 |
-
num_inference_steps = gr.Slider(
|
79 |
-
label="Number of steps",
|
80 |
-
minimum=1,
|
81 |
-
maximum=Model.MAX_NUM_INFERENCE_STEPS,
|
82 |
-
step=1,
|
83 |
-
value=30,
|
84 |
-
)
|
85 |
-
guidance_scale = gr.Slider(
|
86 |
-
label="Guidance scale",
|
87 |
-
minimum=0.1,
|
88 |
-
maximum=30.0,
|
89 |
-
step=0.1,
|
90 |
-
value=5.0,
|
91 |
-
)
|
92 |
-
adapter_conditioning_scale = gr.Slider(
|
93 |
-
label="Adapter Conditioning Scale",
|
94 |
-
minimum=0.5,
|
95 |
-
maximum=1,
|
96 |
-
step=0.1,
|
97 |
-
value=1.0,
|
98 |
-
)
|
99 |
-
cond_tau = gr.Slider(
|
100 |
-
label="Fraction of timesteps for which adapter should be applied",
|
101 |
-
minimum=0.5,
|
102 |
-
maximum=1.0,
|
103 |
-
step=0.1,
|
104 |
-
value=1.0,
|
105 |
-
)
|
106 |
-
seed = gr.Slider(
|
107 |
-
label="Seed",
|
108 |
-
minimum=0,
|
109 |
-
maximum=MAX_SEED,
|
110 |
-
step=1,
|
111 |
-
value=0,
|
112 |
-
)
|
113 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
114 |
-
with gr.Column():
|
115 |
-
result = gr.Gallery(label="Result", columns=2, height=600, object_fit="scale-down", show_label=False)
|
116 |
-
|
117 |
-
inputs = [
|
118 |
-
image,
|
119 |
-
prompt,
|
120 |
-
negative_prompt,
|
121 |
-
adapter_name,
|
122 |
-
num_inference_steps,
|
123 |
-
guidance_scale,
|
124 |
-
adapter_conditioning_scale,
|
125 |
-
cond_tau,
|
126 |
-
seed,
|
127 |
-
apply_preprocess,
|
128 |
-
]
|
129 |
-
prompt.submit(
|
130 |
-
fn=randomize_seed_fn,
|
131 |
-
inputs=[seed, randomize_seed],
|
132 |
-
outputs=seed,
|
133 |
-
queue=False,
|
134 |
-
api_name=False,
|
135 |
-
).then(
|
136 |
-
fn=run,
|
137 |
-
inputs=inputs,
|
138 |
-
outputs=result,
|
139 |
-
api_name=False,
|
140 |
-
)
|
141 |
-
negative_prompt.submit(
|
142 |
-
fn=randomize_seed_fn,
|
143 |
-
inputs=[seed, randomize_seed],
|
144 |
-
outputs=seed,
|
145 |
-
queue=False,
|
146 |
-
api_name=False,
|
147 |
-
).then(
|
148 |
-
fn=run,
|
149 |
-
inputs=inputs,
|
150 |
-
outputs=result,
|
151 |
-
api_name=False,
|
152 |
-
)
|
153 |
-
run_button.click(
|
154 |
-
fn=randomize_seed_fn,
|
155 |
-
inputs=[seed, randomize_seed],
|
156 |
-
outputs=seed,
|
157 |
-
queue=False,
|
158 |
-
api_name=False,
|
159 |
-
).then(
|
160 |
-
fn=run,
|
161 |
-
inputs=inputs,
|
162 |
-
outputs=result,
|
163 |
-
api_name="run",
|
164 |
-
)
|
165 |
|
166 |
if __name__ == "__main__":
|
167 |
demo.queue(max_size=20).launch()
|
|
|
1 |
#!/usr/bin/env python
|
2 |
|
3 |
import os
|
|
|
4 |
|
5 |
import gradio as gr
|
|
|
|
|
6 |
import torch
|
7 |
|
8 |
+
from app_base import create_demo as create_demo_base
|
9 |
+
from app_sketch import create_demo as create_demo_sketch
|
10 |
from model import ADAPTER_NAMES, Model
|
11 |
|
12 |
DESCRIPTION = "# T2I-Adapter-SDXL"
|
|
|
14 |
if not torch.cuda.is_available():
|
15 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
model = Model(ADAPTER_NAMES[0])
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
with gr.Blocks(css="style.css") as demo:
|
22 |
gr.Markdown(DESCRIPTION)
|
23 |
gr.DuplicateButton(
|
|
|
25 |
elem_id="duplicate-button",
|
26 |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
27 |
)
|
28 |
+
with gr.Tabs():
|
29 |
+
with gr.Tab(label="Base"):
|
30 |
+
create_demo_base(model)
|
31 |
+
with gr.Tab(label="Sketch"):
|
32 |
+
create_demo_sketch(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
if __name__ == "__main__":
|
35 |
demo.queue(max_size=20).launch()
|
app_base.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import PIL.Image
|
5 |
+
|
6 |
+
from model import ADAPTER_NAMES, Model
|
7 |
+
from utils import MAX_SEED, randomize_seed_fn
|
8 |
+
|
9 |
+
|
10 |
+
def create_demo(model: Model) -> gr.Blocks:
|
11 |
+
def run(
|
12 |
+
image: PIL.Image.Image,
|
13 |
+
prompt: str,
|
14 |
+
negative_prompt: str,
|
15 |
+
adapter_name: str,
|
16 |
+
num_inference_steps: int = 30,
|
17 |
+
guidance_scale: float = 5.0,
|
18 |
+
adapter_conditioning_scale: float = 1.0,
|
19 |
+
cond_tau: float = 1.0,
|
20 |
+
seed: int = 0,
|
21 |
+
apply_preprocess: bool = True,
|
22 |
+
progress=gr.Progress(track_tqdm=True),
|
23 |
+
) -> list[PIL.Image.Image]:
|
24 |
+
return model.run(
|
25 |
+
image=image,
|
26 |
+
prompt=prompt,
|
27 |
+
negative_prompt=negative_prompt,
|
28 |
+
adapter_name=adapter_name,
|
29 |
+
num_inference_steps=num_inference_steps,
|
30 |
+
guidance_scale=guidance_scale,
|
31 |
+
adapter_conditioning_scale=adapter_conditioning_scale,
|
32 |
+
cond_tau=cond_tau,
|
33 |
+
seed=seed,
|
34 |
+
apply_preprocess=apply_preprocess,
|
35 |
+
)
|
36 |
+
|
37 |
+
with gr.Blocks() as demo:
|
38 |
+
with gr.Row():
|
39 |
+
with gr.Column():
|
40 |
+
with gr.Group():
|
41 |
+
image = gr.Image(label="Input image", type="pil", height=600)
|
42 |
+
prompt = gr.Textbox(label="Prompt")
|
43 |
+
adapter_name = gr.Dropdown(label="Adapter", choices=ADAPTER_NAMES, value=ADAPTER_NAMES[0])
|
44 |
+
run_button = gr.Button("Run")
|
45 |
+
with gr.Accordion("Advanced options", open=False):
|
46 |
+
apply_preprocess = gr.Checkbox(label="Apply preprocess", value=True)
|
47 |
+
negative_prompt = gr.Textbox(
|
48 |
+
label="Negative prompt",
|
49 |
+
value="anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
50 |
+
)
|
51 |
+
num_inference_steps = gr.Slider(
|
52 |
+
label="Number of steps",
|
53 |
+
minimum=1,
|
54 |
+
maximum=Model.MAX_NUM_INFERENCE_STEPS,
|
55 |
+
step=1,
|
56 |
+
value=30,
|
57 |
+
)
|
58 |
+
guidance_scale = gr.Slider(
|
59 |
+
label="Guidance scale",
|
60 |
+
minimum=0.1,
|
61 |
+
maximum=30.0,
|
62 |
+
step=0.1,
|
63 |
+
value=5.0,
|
64 |
+
)
|
65 |
+
adapter_conditioning_scale = gr.Slider(
|
66 |
+
label="Adapter Conditioning Scale",
|
67 |
+
minimum=0.5,
|
68 |
+
maximum=1,
|
69 |
+
step=0.1,
|
70 |
+
value=1.0,
|
71 |
+
)
|
72 |
+
cond_tau = gr.Slider(
|
73 |
+
label="Fraction of timesteps for which adapter should be applied",
|
74 |
+
minimum=0.5,
|
75 |
+
maximum=1.0,
|
76 |
+
step=0.1,
|
77 |
+
value=1.0,
|
78 |
+
)
|
79 |
+
seed = gr.Slider(
|
80 |
+
label="Seed",
|
81 |
+
minimum=0,
|
82 |
+
maximum=MAX_SEED,
|
83 |
+
step=1,
|
84 |
+
value=0,
|
85 |
+
)
|
86 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
87 |
+
with gr.Column():
|
88 |
+
result = gr.Gallery(label="Result", columns=2, height=600, object_fit="scale-down", show_label=False)
|
89 |
+
|
90 |
+
inputs = [
|
91 |
+
image,
|
92 |
+
prompt,
|
93 |
+
negative_prompt,
|
94 |
+
adapter_name,
|
95 |
+
num_inference_steps,
|
96 |
+
guidance_scale,
|
97 |
+
adapter_conditioning_scale,
|
98 |
+
cond_tau,
|
99 |
+
seed,
|
100 |
+
apply_preprocess,
|
101 |
+
]
|
102 |
+
prompt.submit(
|
103 |
+
fn=randomize_seed_fn,
|
104 |
+
inputs=[seed, randomize_seed],
|
105 |
+
outputs=seed,
|
106 |
+
queue=False,
|
107 |
+
api_name=False,
|
108 |
+
).then(
|
109 |
+
fn=run,
|
110 |
+
inputs=inputs,
|
111 |
+
outputs=result,
|
112 |
+
api_name=False,
|
113 |
+
)
|
114 |
+
negative_prompt.submit(
|
115 |
+
fn=randomize_seed_fn,
|
116 |
+
inputs=[seed, randomize_seed],
|
117 |
+
outputs=seed,
|
118 |
+
queue=False,
|
119 |
+
api_name=False,
|
120 |
+
).then(
|
121 |
+
fn=run,
|
122 |
+
inputs=inputs,
|
123 |
+
outputs=result,
|
124 |
+
api_name=False,
|
125 |
+
)
|
126 |
+
run_button.click(
|
127 |
+
fn=randomize_seed_fn,
|
128 |
+
inputs=[seed, randomize_seed],
|
129 |
+
outputs=seed,
|
130 |
+
queue=False,
|
131 |
+
api_name=False,
|
132 |
+
).then(
|
133 |
+
fn=run,
|
134 |
+
inputs=inputs,
|
135 |
+
outputs=result,
|
136 |
+
api_name="run",
|
137 |
+
)
|
138 |
+
|
139 |
+
return demo
|
140 |
+
|
141 |
+
|
142 |
+
if __name__ == "__main__":
|
143 |
+
model = Model(ADAPTER_NAMES[0])
|
144 |
+
demo = create_demo(model)
|
145 |
+
demo.queue(max_size=20).launch()
|
app_sketch.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import PIL.Image
|
5 |
+
import torch
|
6 |
+
import torchvision.transforms.functional as TF
|
7 |
+
|
8 |
+
from model import Model
|
9 |
+
from utils import MAX_SEED, randomize_seed_fn
|
10 |
+
|
11 |
+
SKETCH_ADAPTER_NAME = "TencentARC/t2i-adapter-sketch-sdxl-1.0"
|
12 |
+
|
13 |
+
style_list = [
|
14 |
+
{
|
15 |
+
"name": "Cinematic",
|
16 |
+
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
17 |
+
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"name": "3D Model",
|
21 |
+
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
|
22 |
+
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"name": "Anime",
|
26 |
+
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
|
27 |
+
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "Digital Art",
|
31 |
+
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
|
32 |
+
"negative_prompt": "photo, photorealistic, realism, ugly",
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"name": "Photographic",
|
36 |
+
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
|
37 |
+
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"name": "Pixel art",
|
41 |
+
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
|
42 |
+
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"name": "Fantasy art",
|
46 |
+
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
|
47 |
+
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
|
48 |
+
},
|
49 |
+
]
|
50 |
+
|
51 |
+
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
52 |
+
default_style_name = "Photographic"
|
53 |
+
default_style = styles[default_style_name]
|
54 |
+
style_names = list(styles.keys())
|
55 |
+
|
56 |
+
|
57 |
+
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
|
58 |
+
p, n = styles.get(style_name, default_style)
|
59 |
+
return p.replace("{prompt}", positive), n + negative
|
60 |
+
|
61 |
+
|
62 |
+
def create_demo(model: Model) -> gr.Blocks:
|
63 |
+
def run(
|
64 |
+
image: PIL.Image.Image,
|
65 |
+
prompt: str,
|
66 |
+
negative_prompt: str,
|
67 |
+
style_name: str = default_style_name,
|
68 |
+
num_steps: int = 25,
|
69 |
+
guidance_scale: float = 5,
|
70 |
+
adapter_conditioning_scale: float = 0.8,
|
71 |
+
cond_tau: float = 0.8,
|
72 |
+
seed: int = 0,
|
73 |
+
progress=gr.Progress(track_tqdm=True),
|
74 |
+
) -> PIL.Image.Image:
|
75 |
+
image = image.convert("RGB")
|
76 |
+
image = TF.to_tensor(image) > 0.5
|
77 |
+
image = TF.to_pil_image(image.to(torch.float32))
|
78 |
+
|
79 |
+
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
80 |
+
|
81 |
+
return model.run(
|
82 |
+
image=image,
|
83 |
+
prompt=prompt,
|
84 |
+
negative_prompt=negative_prompt,
|
85 |
+
adapter_name=SKETCH_ADAPTER_NAME,
|
86 |
+
num_inference_steps=num_steps,
|
87 |
+
guidance_scale=guidance_scale,
|
88 |
+
adapter_conditioning_scale=adapter_conditioning_scale,
|
89 |
+
cond_tau=cond_tau,
|
90 |
+
seed=seed,
|
91 |
+
apply_preprocess=False,
|
92 |
+
)[1]
|
93 |
+
|
94 |
+
with gr.Blocks() as demo:
|
95 |
+
with gr.Row():
|
96 |
+
with gr.Column():
|
97 |
+
with gr.Group():
|
98 |
+
image = gr.Image(
|
99 |
+
source="canvas",
|
100 |
+
tool="sketch",
|
101 |
+
type="pil",
|
102 |
+
image_mode="L",
|
103 |
+
invert_colors=True,
|
104 |
+
shape=(1024, 1024),
|
105 |
+
brush_radius=4,
|
106 |
+
height=600,
|
107 |
+
)
|
108 |
+
prompt = gr.Textbox(label="Prompt")
|
109 |
+
run_button = gr.Button("Run")
|
110 |
+
with gr.Accordion("Advanced options", open=False):
|
111 |
+
style = gr.Dropdown(choices=style_names, value=default_style_name, label="Style")
|
112 |
+
negative_prompt = gr.Textbox(label="Negative prompt")
|
113 |
+
num_steps = gr.Slider(
|
114 |
+
label="Number of steps",
|
115 |
+
minimum=1,
|
116 |
+
maximum=50,
|
117 |
+
step=1,
|
118 |
+
value=25,
|
119 |
+
)
|
120 |
+
guidance_scale = gr.Slider(
|
121 |
+
label="Guidance scale",
|
122 |
+
minimum=0.1,
|
123 |
+
maximum=10.0,
|
124 |
+
step=0.1,
|
125 |
+
value=5,
|
126 |
+
)
|
127 |
+
adapter_conditioning_scale = gr.Slider(
|
128 |
+
label="Adapter Conditioning Scale",
|
129 |
+
minimum=0.5,
|
130 |
+
maximum=1,
|
131 |
+
step=0.1,
|
132 |
+
value=0.8,
|
133 |
+
)
|
134 |
+
cond_tau = gr.Slider(
|
135 |
+
label="Fraction of timesteps for which adapter should be applied",
|
136 |
+
minimum=0.5,
|
137 |
+
maximum=1,
|
138 |
+
step=0.1,
|
139 |
+
value=0.8,
|
140 |
+
)
|
141 |
+
seed = gr.Slider(
|
142 |
+
label="Seed",
|
143 |
+
minimum=0,
|
144 |
+
maximum=MAX_SEED,
|
145 |
+
step=1,
|
146 |
+
value=0,
|
147 |
+
)
|
148 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
149 |
+
with gr.Column():
|
150 |
+
result = gr.Image(label="Result", height=600)
|
151 |
+
|
152 |
+
inputs = [
|
153 |
+
image,
|
154 |
+
prompt,
|
155 |
+
negative_prompt,
|
156 |
+
style,
|
157 |
+
num_steps,
|
158 |
+
guidance_scale,
|
159 |
+
adapter_conditioning_scale,
|
160 |
+
cond_tau,
|
161 |
+
seed,
|
162 |
+
]
|
163 |
+
prompt.submit(
|
164 |
+
fn=randomize_seed_fn,
|
165 |
+
inputs=[seed, randomize_seed],
|
166 |
+
outputs=seed,
|
167 |
+
queue=False,
|
168 |
+
api_name=False,
|
169 |
+
).then(
|
170 |
+
fn=run,
|
171 |
+
inputs=inputs,
|
172 |
+
outputs=result,
|
173 |
+
api_name=False,
|
174 |
+
)
|
175 |
+
negative_prompt.submit(
|
176 |
+
fn=randomize_seed_fn,
|
177 |
+
inputs=[seed, randomize_seed],
|
178 |
+
outputs=seed,
|
179 |
+
queue=False,
|
180 |
+
api_name=False,
|
181 |
+
).then(
|
182 |
+
fn=run,
|
183 |
+
inputs=inputs,
|
184 |
+
outputs=result,
|
185 |
+
api_name=False,
|
186 |
+
)
|
187 |
+
run_button.click(
|
188 |
+
fn=randomize_seed_fn,
|
189 |
+
inputs=[seed, randomize_seed],
|
190 |
+
outputs=seed,
|
191 |
+
queue=False,
|
192 |
+
api_name=False,
|
193 |
+
).then(
|
194 |
+
fn=run,
|
195 |
+
inputs=inputs,
|
196 |
+
outputs=result,
|
197 |
+
api_name=False,
|
198 |
+
)
|
199 |
+
|
200 |
+
return demo
|
201 |
+
|
202 |
+
|
203 |
+
if __name__ == "__main__":
|
204 |
+
model = Model(SKETCH_ADAPTER_NAME)
|
205 |
+
demo = create_demo(model)
|
206 |
+
demo.queue(max_size=20).launch()
|
model.py
CHANGED
@@ -193,13 +193,11 @@ class Model:
|
|
193 |
torch_dtype=torch.float16,
|
194 |
varient="fp16",
|
195 |
).to(self.device)
|
196 |
-
euler_a = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
197 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
198 |
self.pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
199 |
model_id,
|
200 |
-
vae=vae,
|
201 |
adapter=adapter,
|
202 |
-
scheduler=
|
203 |
torch_dtype=torch.float16,
|
204 |
variant="fp16",
|
205 |
).to(self.device)
|
|
|
193 |
torch_dtype=torch.float16,
|
194 |
varient="fp16",
|
195 |
).to(self.device)
|
|
|
|
|
196 |
self.pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
197 |
model_id,
|
198 |
+
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16),
|
199 |
adapter=adapter,
|
200 |
+
scheduler=EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler"),
|
201 |
torch_dtype=torch.float16,
|
202 |
variant="fp16",
|
203 |
).to(self.device)
|
utils.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
MAX_SEED = np.iinfo(np.int32).max
|
6 |
+
|
7 |
+
|
8 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
9 |
+
if randomize_seed:
|
10 |
+
seed = random.randint(0, MAX_SEED)
|
11 |
+
return seed
|