from transformers import AutoTokenizer, MistralForCausalLM import torch import gradio as gr import random from textwrap import wrap from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM from peft import PeftModel, PeftConfig import torch import gradio as gr import os hf_token = os.environ.get('HUGGINGFACE_TOKEN') # Functions to Wrap the Prompt Correctly def wrap_text(text, width=90): lines = text.split('\n') wrapped_lines = [textwrap.fill(line, width=width) for line in lines] wrapped_text = '\n'.join(wrapped_lines) return wrapped_text def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"): # Combine user input and system prompt formatted_input = f"{user_input}{system_prompt}" # Encode the input text encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False) model_inputs = encodeds.to(device) # Generate a response using the model output = model.generate( **model_inputs, max_length=max_length, use_cache=True, early_stopping=True, bos_token_id=model.config.bos_token_id, eos_token_id=model.config.eos_token_id, pad_token_id=model.config.eos_token_id, temperature=0.1, do_sample=True ) # Decode the response response_text = tokenizer.decode(output[0], skip_special_tokens=True) return response_text # Define the device device = "cuda" if torch.cuda.is_available() else "cpu" # Use the base model's ID base_model_id = "stabilityai/stablelm-3b-4e1t" model_directory = "Tonic/stablemed" # Instantiate the Tokenizer tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True, padding_side="left") # tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = 'left' # Load the PEFT model peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token) peft_model = AutoModelForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", token=hf_token, trust_remote_code=True) peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token) class ChatBot: def __init__(self): self.history = [] def predict(self, user_input, system_prompt="You are an expert medical analyst:"): # Combine user input and system prompt formatted_input = f"{user_input}{system_prompt}" # Encode user input user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt") # Concatenate the user input with chat history if len(self.history) > 0: chat_history_ids = torch.cat([self.history, user_input_ids], dim=-1) else: chat_history_ids = user_input_ids # Generate a response using the PEFT model response = peft_model.generate(input_ids=chat_history_ids, max_length=1200, pad_token_id=tokenizer.eos_token_id) # Update chat history self.history = chat_history_ids # Decode and return the response response_text = tokenizer.decode(response[0], skip_special_tokens=True) return response_text bot = ChatBot() title = "👋🏻Welcome to Tonic's 😷StableMed⚕️ Chat🦟" description = """ You can use this Space to test out the current model [StableMed](https://huggingface.co/Tonic/stablemed) You can also use 😷StableMed⚕️ on your laptop & by cloning this space. 🧬🔬🔍 Simply click here: Duplicate Space Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) """ examples = [["What is the proper treatment for buccal herpes?", "Please provide information on the most effective antiviral medications and home remedies for treating buccal herpes."]] iface = gr.Interface( fn=bot.predict, title=title, description=description, examples=examples, inputs=["text", "text"], # Take user input and system prompt separately outputs="text", theme="ParityError/Anime" ) iface.launch()