Spaces:
Runtime error
Runtime error
yuanze1024
commited on
Commit
·
def39ee
1
Parent(s):
ff4d2cd
update app.py
Browse files
README.md
CHANGED
@@ -7,6 +7,11 @@ sdk: docker
|
|
7 |
app_port: 7860
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
7 |
app_port: 7860
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
models:
|
11 |
+
- timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k
|
12 |
+
- BAAI/Uni3D
|
13 |
+
datasets:
|
14 |
+
- VAST-AI/LD-T3D
|
15 |
---
|
16 |
|
17 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
-
import numpy as np
|
4 |
import torch
|
5 |
import functools
|
|
|
6 |
from datasets import load_dataset
|
7 |
from feature_extractors.uni3d_embedding_encoder import Uni3dEmbeddingEncoder
|
8 |
|
@@ -19,6 +20,7 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
19 |
source_id_list = torch.load("data/source_id_list.pt")
|
20 |
source_to_id = {source_id: i for i, source_id in enumerate(source_id_list)}
|
21 |
dataset = load_dataset("VAST-AI/LD-T3D", name=f"rendered_imgs_diag_above", split="base", cache_dir=cache_dir)
|
|
|
22 |
|
23 |
@functools.lru_cache()
|
24 |
def get_embedding(option, modality, angle=None):
|
@@ -34,8 +36,8 @@ def predict(xb, xq, top_k):
|
|
34 |
_, indices = sim.topk(k=top_k, largest=True)
|
35 |
return indices
|
36 |
|
37 |
-
def
|
38 |
-
return dataset[index]["image"]
|
39 |
|
40 |
def retrieve_3D_models(textual_query, top_k, modality_list):
|
41 |
if textual_query == "":
|
@@ -88,35 +90,106 @@ def retrieve_3D_models(textual_query, top_k, modality_list):
|
|
88 |
return pred_ind_list[0].cpu().tolist() # we have only one query
|
89 |
|
90 |
indices = _retrieve_3D_models(textual_query, top_k, modality_list)
|
91 |
-
return [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
def launch():
|
94 |
-
with gr.Blocks() as demo:
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
demo.queue(max_size=10)
|
121 |
|
122 |
os.environ.pop('HTTP_PROXY')
|
|
|
1 |
import os
|
2 |
+
import random
|
3 |
import gradio as gr
|
|
|
4 |
import torch
|
5 |
import functools
|
6 |
+
from PIL import Image
|
7 |
from datasets import load_dataset
|
8 |
from feature_extractors.uni3d_embedding_encoder import Uni3dEmbeddingEncoder
|
9 |
|
|
|
20 |
source_id_list = torch.load("data/source_id_list.pt")
|
21 |
source_to_id = {source_id: i for i, source_id in enumerate(source_id_list)}
|
22 |
dataset = load_dataset("VAST-AI/LD-T3D", name=f"rendered_imgs_diag_above", split="base", cache_dir=cache_dir)
|
23 |
+
relation = load_dataset("VAST-AI/LD-T3D", split="full", cache_dir=cache_dir)
|
24 |
|
25 |
@functools.lru_cache()
|
26 |
def get_embedding(option, modality, angle=None):
|
|
|
36 |
_, indices = sim.topk(k=top_k, largest=True)
|
37 |
return indices
|
38 |
|
39 |
+
def get_image_and_id(index):
|
40 |
+
return dataset[index]["image"], dataset[index]["source_id"]
|
41 |
|
42 |
def retrieve_3D_models(textual_query, top_k, modality_list):
|
43 |
if textual_query == "":
|
|
|
90 |
return pred_ind_list[0].cpu().tolist() # we have only one query
|
91 |
|
92 |
indices = _retrieve_3D_models(textual_query, top_k, modality_list)
|
93 |
+
return [get_image_and_id(index) for index in indices]
|
94 |
+
|
95 |
+
def get_sub_dataset(sub_dataset_id):
|
96 |
+
"""
|
97 |
+
get sub-dataset by sub_dataset_id [1, 1000]
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
caption: str
|
101 |
+
difficulty: str
|
102 |
+
images: list of tuple (PIL.Image, str)
|
103 |
+
"""
|
104 |
+
rel = relation[sub_dataset_id - 1]
|
105 |
+
target_ids, GT_ids, caption, difficulty = set(rel["target_ids"]), set(rel["GT_ids"]), rel["caption"], rel["difficulty"]
|
106 |
+
negative_ids = target_ids - GT_ids
|
107 |
+
|
108 |
+
def handle_image(image, is_gt=False):
|
109 |
+
"image is a PIL.Image object, surround the image with green border if is_gt, else red border"
|
110 |
+
border_color = (0, 255, 0) if is_gt else (255, 0, 0)
|
111 |
+
border_width = 5
|
112 |
+
new_image = Image.new("RGBA", (image.width + 2 * border_width, image.height + 2 * border_width), border_color)
|
113 |
+
new_image.paste(image, (border_width, border_width))
|
114 |
+
return new_image
|
115 |
+
|
116 |
+
results = []
|
117 |
+
for gt_id in GT_ids:
|
118 |
+
image, source_id = get_image_and_id(source_to_id[gt_id])
|
119 |
+
results.append((handle_image(image, True), source_id))
|
120 |
+
for neg_id in negative_ids:
|
121 |
+
image, source_id = get_image_and_id(source_to_id[neg_id])
|
122 |
+
results.append((handle_image(image, False), source_id))
|
123 |
+
|
124 |
+
return caption, difficulty, results
|
125 |
+
|
126 |
+
def feel_lucky():
|
127 |
+
sub_dataset_id = random.randint(1, 1000)
|
128 |
+
return sub_dataset_id, *get_sub_dataset(sub_dataset_id)
|
129 |
|
130 |
def launch():
|
131 |
+
with gr.Blocks() as demo: # https://sketchfab.com/3d-models/fd30f87848c9454c9225eccc39726787
|
132 |
+
md = gr.Markdown(r"""## LD-T3D: A Large-scale and Diverse Benchmark for Text-based 3D Model Retrieval
|
133 |
+
**Official 🤗 Gradio demo** for [LD-T3D: A Large-scale and Diverse Benchmark for Text-based 3D Model Retrieval](arxiv.org)""")
|
134 |
+
with gr.Tab("Retrieval Visualization"):
|
135 |
+
with gr.Row():
|
136 |
+
md2 = gr.Markdown(r"""### Visualization for Text-Based-3D Model Retrieval
|
137 |
+
We build a visualization demo to demonstrate the text-based-3D model retrievals. Due to the memory limitation of HF Space, we only support the [Uni3D](https://github.com/baaivision/Uni3D) which has shown an excellent performance in our benchmark.
|
138 |
+
|
139 |
+
**Note**:
|
140 |
+
|
141 |
+
The *Modality List* refers to the features ensembled by the retrieval methods. According to our experiment results, basically the more modalities, the better performance the methods gets.""")
|
142 |
+
with gr.Row():
|
143 |
+
textual_query = gr.Textbox(label="Textual Query", autofocus=True,
|
144 |
+
placeholder="A chair with a wooden frame and a cushioned seat")
|
145 |
+
modality_list = gr.CheckboxGroup(label="Modality List", value=[],
|
146 |
+
choices=["text", "front", "back", "left", "right", "above",
|
147 |
+
"below", "diag_above", "diag_below", "3D"])
|
148 |
+
with gr.Row():
|
149 |
+
top_k = gr.Slider(minimum=1, maximum=MAX_K_RETRIEVAL, step=1, label="Top K Retrieval Result",
|
150 |
+
value=5, scale=2)
|
151 |
+
run = gr.Button("Search", scale=1, variant='primary')
|
152 |
+
clear_button = gr.ClearButton(scale=1)
|
153 |
+
with gr.Row():
|
154 |
+
output = gr.Gallery(format="webp", label="Retrieval Result", columns=5, type="pil", interactive=False)
|
155 |
+
run.click(retrieve_3D_models, [textual_query, top_k, modality_list], output,
|
156 |
+
# batch=True, max_batch_size=MAX_BATCH_SIZE
|
157 |
+
)
|
158 |
+
clear_button.click(lambda: ["", 5, [], []], outputs=[textual_query, top_k, modality_list, output])
|
159 |
+
examples = gr.Examples(examples=[["An ice cream with a cherry on top", 10, ["text", "front", "back", "left", "right", "above", "below", "diag_above", "diag_below", "3D"]],
|
160 |
+
["A mid-age castle", 10, ["text", "front", "back", "left", "right", "above", "below", "diag_above", "diag_below", "3D"]],
|
161 |
+
["A coke", 10, ["text", "front", "back", "left", "right", "above", "below", "diag_above", "diag_below", "3D"]]],
|
162 |
+
inputs=[textual_query, top_k, modality_list],
|
163 |
+
outputs=output,
|
164 |
+
fn=retrieve_3D_models)
|
165 |
+
with gr.Tab("Federated Dataset"):
|
166 |
+
md3 = gr.Markdown(r"""### Visualization for Federated Dataset
|
167 |
+
We provide a federated dataset that contains **1000** textual queries and **89K** 3D models, which corresponds to **1000** sub-datasets with around **100** 3D models.
|
168 |
+
In total, there is 100K pairs of text-to-3D model relationships.
|
169 |
+
|
170 |
+
Here is a visualization of the dataset.
|
171 |
+
|
172 |
+
**Usage:**
|
173 |
+
|
174 |
+
1. You can click the "I'm Feeling Lucky !" button to randomly select a sub-dataset.
|
175 |
+
2. Or you can **Enter** to submit a Sub-dataset ID in **[1, 1000]**, which you can find details in our dataset [LD-T3D](https://huggingface.co/datasets/VAST-AI/LD-T3D), to search for the corresponding sub-dataset.
|
176 |
+
|
177 |
+
**Note:**
|
178 |
+
|
179 |
+
The *Query* is used in this sub-dataset. The *Difficulty* is a coarse label for the textual query, which is divided into **easy**, **medium**, and **hard**, basically submit to the rule in our paper.
|
180 |
+
The color surrounding the 3D model indicates whether it is a good fit for the textual query. A **<span style="color:#00FF00">green</span>** color suggests a Ground Truth, while a **<span style="color:#FF0000">red</span>** color indicates a mismatch.""")
|
181 |
+
with gr.Row():
|
182 |
+
lucky = gr.Button("I'm Feeling Lucky !", scale=1, variant='primary')
|
183 |
+
query_id = gr.Number(label="Sub-dataset ID", scale=1, minimum=1, maximum=1000, step=1, interactive=True)
|
184 |
+
query = gr.Textbox(label="Textual Query", scale=3, interactive=False)
|
185 |
+
difficulty = gr.Textbox(label="Query Difficulty", scale=1, interactive=False)
|
186 |
+
# model3d = gr.Model3D(interactive=False, scale=1)
|
187 |
+
with gr.Row():
|
188 |
+
output2 = gr.Gallery(format="webp", label="3D Models in Sub-dataset", columns=5, type="pil", interactive=False)
|
189 |
+
|
190 |
+
lucky.click(feel_lucky, outputs=[query_id, query, difficulty, output2])
|
191 |
+
query_id.submit(get_sub_dataset, query_id, [query, difficulty, output2])
|
192 |
+
|
193 |
demo.queue(max_size=10)
|
194 |
|
195 |
os.environ.pop('HTTP_PROXY')
|