Spaces:
Running
Running
import phonemizer | |
import re | |
import torch | |
from espeak_util import set_espeak_library | |
set_espeak_library() | |
def split_num(num): | |
num = num.group() | |
if "." in num: | |
return num | |
elif ":" in num: | |
h, m = [int(n) for n in num.split(":")] | |
if m == 0: | |
return f"{h} o'clock" | |
elif m < 10: | |
return f"{h} oh {m}" | |
return f"{h} {m}" | |
year = int(num[:4]) | |
if year < 1100 or year % 1000 < 10: | |
return num | |
left, right = num[:2], int(num[2:4]) | |
s = "s" if num.endswith("s") else "" | |
if 100 <= year % 1000 <= 999: | |
if right == 0: | |
return f"{left} hundred{s}" | |
elif right < 10: | |
return f"{left} oh {right}{s}" | |
return f"{left} {right}{s}" | |
def flip_money(m): | |
m = m.group() | |
bill = "dollar" if m[0] == "$" else "pound" | |
if m[-1].isalpha(): | |
return f"{m[1:]} {bill}s" | |
elif "." not in m: | |
s = "" if m[1:] == "1" else "s" | |
return f"{m[1:]} {bill}{s}" | |
b, c = m[1:].split(".") | |
s = "" if b == "1" else "s" | |
c = int(c.ljust(2, "0")) | |
coins = ( | |
f"cent{'' if c == 1 else 's'}" | |
if m[0] == "$" | |
else ("penny" if c == 1 else "pence") | |
) | |
return f"{b} {bill}{s} and {c} {coins}" | |
def point_num(num): | |
a, b = num.group().split(".") | |
return " point ".join([a, " ".join(b)]) | |
def normalize_text(text): | |
text = text.replace(chr(8216), "'").replace(chr(8217), "'") | |
text = text.replace("«", chr(8220)).replace("»", chr(8221)) | |
text = text.replace(chr(8220), '"').replace(chr(8221), '"') | |
text = text.replace("(", "«").replace(")", "»") | |
for a, b in zip("、。!,:;?", ",.!,:;?"): | |
text = text.replace(a, b + " ") | |
text = re.sub(r"[^\S \n]", " ", text) | |
text = re.sub(r" +", " ", text) | |
text = re.sub(r"(?<=\n) +(?=\n)", "", text) | |
text = re.sub(r"\bD[Rr]\.(?= [A-Z])", "Doctor", text) | |
text = re.sub(r"\b(?:Mr\.|MR\.(?= [A-Z]))", "Mister", text) | |
text = re.sub(r"\b(?:Ms\.|MS\.(?= [A-Z]))", "Miss", text) | |
text = re.sub(r"\b(?:Mrs\.|MRS\.(?= [A-Z]))", "Mrs", text) | |
text = re.sub(r"\betc\.(?! [A-Z])", "etc", text) | |
text = re.sub(r"(?i)\b(y)eah?\b", r"\1e'a", text) | |
text = re.sub( | |
r"\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)", split_num, text | |
) | |
text = re.sub(r"(?<=\d),(?=\d)", "", text) | |
text = re.sub( | |
r"(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b", | |
flip_money, | |
text, | |
) | |
text = re.sub(r"\d*\.\d+", point_num, text) | |
text = re.sub(r"(?<=\d)-(?=\d)", " to ", text) | |
text = re.sub(r"(?<=\d)S", " S", text) | |
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text) | |
text = re.sub(r"(?<=X')S\b", "s", text) | |
text = re.sub( | |
r"(?:[A-Za-z]\.){2,} [a-z]", lambda m: m.group().replace(".", "-"), text | |
) | |
text = re.sub(r"(?i)(?<=[A-Z])\.(?=[A-Z])", "-", text) | |
return text.strip() | |
def get_vocab(): | |
_pad = "$" | |
_punctuation = ';:,.!?¡¿—…"«»“” ' | |
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" | |
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ" | |
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) | |
dicts = {} | |
for i in range(len((symbols))): | |
dicts[symbols[i]] = i | |
return dicts | |
VOCAB = get_vocab() | |
def tokenize(ps): | |
return [i for i in map(VOCAB.get, ps) if i is not None] | |
phonemizers = dict( | |
a=phonemizer.backend.EspeakBackend( | |
language="en-us", preserve_punctuation=True, with_stress=True | |
), | |
b=phonemizer.backend.EspeakBackend( | |
language="en-gb", preserve_punctuation=True, with_stress=True | |
), | |
) | |
def phonemize(text, lang, norm=True): | |
if norm: | |
text = normalize_text(text) | |
ps = phonemizers[lang].phonemize([text]) | |
ps = ps[0] if ps else "" | |
# https://en.wiktionary.org/wiki/kokoro#English | |
ps = ps.replace("kəkˈoːɹoʊ", "kˈoʊkəɹoʊ").replace("kəkˈɔːɹəʊ", "kˈəʊkəɹəʊ") | |
ps = ps.replace("ʲ", "j").replace("r", "ɹ").replace("x", "k").replace("ɬ", "l") | |
ps = re.sub(r"(?<=[a-zɹː])(?=hˈʌndɹɪd)", " ", ps) | |
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', "z", ps) | |
if lang == "a": | |
ps = re.sub(r"(?<=nˈaɪn)ti(?!ː)", "di", ps) | |
ps = "".join(filter(lambda p: p in VOCAB, ps)) | |
return ps.strip() | |
def length_to_mask(lengths): | |
mask = ( | |
torch.arange(lengths.max()) | |
.unsqueeze(0) | |
.expand(lengths.shape[0], -1) | |
.type_as(lengths) | |
) | |
mask = torch.gt(mask + 1, lengths.unsqueeze(1)) | |
return mask | |
def forward(model, tokens, ref_s, speed): | |
device = ref_s.device | |
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device) | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) | |
text_mask = length_to_mask(input_lengths).to(device) | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
s = ref_s[:, 128:] | |
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1) / speed | |
pred_dur = torch.round(duration).clamp(min=1).long() | |
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item()) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame : c_frame + pred_dur[0, i].item()] = 1 | |
c_frame += pred_dur[0, i].item() | |
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device) | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device) | |
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy() | |
def generate(model, text, voicepack, lang="a", speed=1): | |
ps = phonemize(text, lang) | |
tokens = tokenize(ps) | |
if not tokens: | |
return None | |
elif len(tokens) > 510: | |
tokens = tokens[:510] | |
print("Truncated to 510 tokens") | |
ref_s = voicepack[len(tokens)] | |
out = forward(model, tokens, ref_s, speed) | |
ps = "".join(next(k for k, v in VOCAB.items() if i == v) for i in tokens) | |
return out, ps | |