Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import spaces | |
import sys | |
from copy import deepcopy | |
sys.path.append('./VADER-VideoCrafter/scripts/main') | |
sys.path.append('./VADER-VideoCrafter/scripts') | |
sys.path.append('./VADER-VideoCrafter') | |
from train_t2v_lora import main_fn, setup_model | |
examples = [ | |
["Fairy and Magical Flowers: A fairy tends to enchanted, glowing flowers.", 'huggingface-hps-aesthetic', | |
8, 901, 384, 512, 12.0, 25, 1.0, 24, 10], | |
["A cat playing an electric guitar in a loft with industrial-style decor and soft, multicolored lights.", | |
'huggingface-hps-aesthetic', 8, 208, 384, 512, 12.0, 25, 1.0, 24, 10], | |
["A raccoon playing a guitar under a blossoming cherry tree.", | |
'huggingface-hps-aesthetic', 8, 180, 384, 512, 12.0, 25, 1.0, 24, 10], | |
["A raccoon playing an electric bass in a garage band setting.", | |
'huggingface-hps-aesthetic', 8, 400, 384, 512, 12.0, 25, 1.0, 24, 10], | |
["A talking bird with shimmering feathers and a melodious voice finds a legendary treasure, guiding through enchanted forests, ancient ruins, and mystical challenges.", | |
"huggingface-pickscore", 16, 200, 384, 512, 12.0, 25, 1.0, 24, 10], | |
["A snow princess stands on the balcony of her ice castle, her hair adorned with delicate snowflakes, overlooking her serene realm.", | |
"huggingface-pickscore", 16, 400, 384, 512, 12.0, 25, 1.0, 24, 10], | |
["A mermaid with flowing hair and a shimmering tail discovers a hidden underwater kingdom adorned with coral palaces, glowing pearls, and schools of colorful fish, encountering both wonders and dangers along the way.", | |
"huggingface-pickscore", 16, 800, 384, 512, 12.0, 25, 1.0, 24, 10], | |
] | |
model = setup_model() | |
def gradio_main_fn(prompt, lora_model, lora_rank, seed, height, width, unconditional_guidance_scale, ddim_steps, ddim_eta, | |
frames, savefps): | |
global model | |
if model is None: | |
return "Model is not loaded. Please load the model first." | |
video_path = main_fn(prompt=prompt, | |
lora_model=lora_model, | |
lora_rank=int(lora_rank), | |
seed=int(seed), | |
height=int(height), | |
width=int(width), | |
unconditional_guidance_scale=float(unconditional_guidance_scale), | |
ddim_steps=int(ddim_steps), | |
ddim_eta=float(ddim_eta), | |
frames=int(frames), | |
savefps=int(savefps), | |
model=deepcopy(model)) | |
return video_path | |
def reset_fn(): | |
return ("A brown dog eagerly eats from a bowl in a kitchen.", | |
200, 384, 512, 12.0, 25, 1.0, 24, 16, 10, "huggingface-pickscore") | |
def update_lora_rank(lora_model): | |
if lora_model == "huggingface-pickscore": | |
return gr.update(value=16) | |
elif lora_model == "huggingface-hps-aesthetic": | |
return gr.update(value=8) | |
else: # "Base Model" | |
return gr.update(value=8) | |
def update_dropdown(lora_rank): | |
if lora_rank == 16: | |
return gr.update(value="huggingface-pickscore") | |
elif lora_rank == 8: | |
return gr.update(value="huggingface-hps-aesthetic") | |
else: # 0 | |
return gr.update(value="Base Model") | |
custom_css = """ | |
#centered { | |
display: flex; | |
justify-content: center; | |
width: 60%; | |
margin: 0 auto; | |
} | |
.column-centered { | |
display: flex; | |
flex-direction: column; | |
align-items: center; | |
width: 60%; | |
} | |
#image-upload { | |
flex-grow: 1; | |
} | |
#params .tabs { | |
display: flex; | |
flex-direction: column; | |
flex-grow: 1; | |
} | |
#params .tabitem[style="display: block;"] { | |
flex-grow: 1; | |
display: flex !important; | |
} | |
#params .gap { | |
flex-grow: 1; | |
} | |
#params .form { | |
flex-grow: 1 !important; | |
} | |
#params .form > :last-child{ | |
flex-grow: 1; | |
} | |
""" | |
with gr.Blocks(css=custom_css) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
""" | |
<h1 style='text-align: center; font-size: 3.2em; margin-bottom: 0.5em; font-family: Arial, sans-serif; margin: 20px;'> | |
ZEN-Diffusion | |
</h1> | |
""" | |
) | |
gr.HTML( | |
""" | |
<style> | |
body { | |
font-family: Arial, sans-serif; | |
text-align: center; | |
margin: 50px; | |
} | |
a { | |
text-decoration: none !important; | |
color: black !important; | |
} | |
</style> | |
<body> | |
<div style="font-size: 1.4em; margin-bottom: 0.5em; "> | |
<a href="https://zenai.biz">ZEN</a><sup>*</sup> | |
</div> | |
<div style="font-size: 1.3em; font-style: italic;"> | |
Creating short 2-3 second videos from text, completely open source from ZEN. | |
</div> | |
</body> | |
""" | |
) | |
gr.HTML( | |
""" | |
<head> | |
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css"> | |
<style> | |
.button-container { | |
display: flex; | |
justify-content: center; | |
gap: 10px; | |
margin-top: 10px; | |
} | |
.button-container a { | |
display: inline-flex; | |
align-items: center; | |
padding: 10px 20px; | |
border-radius: 30px; | |
border: 1px solid #ccc; | |
text-decoration: none; | |
color: #333 !important; | |
font-size: 16px; | |
text-decoration: none !important; | |
} | |
.button-container a i { | |
margin-right: 8px; | |
} | |
</style> | |
</head> | |
<div class="button-container"> | |
<a href="https://arxiv.org/abs/2407.08737" class="btn btn-outline-primary"> | |
<i class="fa-solid fa-file-pdf"></i> Paper | |
</a> | |
<a href="https://zenai.biz" class="btn btn-outline-danger"> | |
<i class="fa-solid fa-video"></i> Website | |
<a href="https://us.zenai.biz" class="btn btn-outline-secondary"> | |
<i class="fa-brands fa-github"></i> ZEN Arena | |
</a> | |
</div> | |
""" | |
) | |
with gr.Row(elem_id="centered"): | |
with gr.Column(elem_id="params"): | |
lora_model = gr.Dropdown( | |
label="VADER Model", | |
choices=["huggingface-pickscore", "huggingface-hps-aesthetic"], | |
value="huggingface-pickscore" | |
) | |
lora_rank = gr.Slider(minimum=8, maximum=16, label="LoRA Rank", step = 8, value=16) | |
prompt = gr.Textbox(placeholder="Enter prompt text here", lines=4, label="Text Prompt", | |
value="A brown dog eagerly eats from a bowl in a kitchen.") | |
run_btn = gr.Button("Run Inference") | |
with gr.Column(): | |
output_video = gr.Video(elem_id="image-upload") | |
with gr.Row(elem_id="centered"): | |
with gr.Column(): | |
seed = gr.Slider(minimum=0, maximum=65536, label="Seed", step = 1, value=200) | |
with gr.Row(): | |
height = gr.Slider(minimum=0, maximum=512, label="Height", step = 16, value=384) | |
width = gr.Slider(minimum=0, maximum=512, label="Width", step = 16, value=512) | |
with gr.Row(): | |
frames = gr.Slider(minimum=0, maximum=50, label="Frames", step = 1, value=24) | |
savefps = gr.Slider(minimum=0, maximum=30, label="Save FPS", step = 1, value=10) | |
with gr.Row(): | |
DDIM_Steps = gr.Slider(minimum=0, maximum=50, label="DDIM Steps", step = 1, value=25) | |
unconditional_guidance_scale = gr.Slider(minimum=0, maximum=50, label="Guidance Scale", step = 0.1, value=12.0) | |
DDIM_Eta = gr.Slider(minimum=0, maximum=1, label="DDIM Eta", step = 0.01, value=1.0) | |
# reset button | |
reset_btn = gr.Button("Reset") | |
reset_btn.click(fn=reset_fn, outputs=[prompt, seed, height, width, unconditional_guidance_scale, DDIM_Steps, DDIM_Eta, frames, lora_rank, savefps, lora_model]) | |
run_btn.click(fn=gradio_main_fn, | |
inputs=[prompt, lora_model, lora_rank, | |
seed, height, width, unconditional_guidance_scale, | |
DDIM_Steps, DDIM_Eta, frames, savefps], | |
outputs=output_video | |
) | |
lora_model.change(fn=update_lora_rank, inputs=lora_model, outputs=lora_rank) | |
lora_rank.change(fn=update_dropdown, inputs=lora_rank, outputs=lora_model) | |
gr.Examples(examples=examples, | |
inputs=[prompt, lora_model, lora_rank, seed, | |
height, width, unconditional_guidance_scale, | |
DDIM_Steps, DDIM_Eta, frames, savefps], | |
outputs=output_video, | |
fn=gradio_main_fn, | |
run_on_click=False, | |
cache_examples="lazy", | |
) | |
demo.launch(share=True) | |