Spaces:
Running
Running
import os | |
from threading import Thread | |
from typing import Iterator | |
import os | |
from huggingface_hub import login,whoami | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import argparse | |
MAX_MAX_NEW_TOKENS = 128 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
model = None | |
tokenizer = None | |
my_token = os.getenv("HF_AUTH_TOKEN") | |
try: | |
username = whoami() | |
except OSError: | |
login(token = my_token, add_to_git_credential = True) | |
model_id = "stabilityai/ar-stablelm-2-chat" | |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
model.generation_config.pad_token_id = model.generation_config.eos_token_id | |
def generate( | |
message: str, | |
chat_history: list[dict], | |
system_prompt: str = "", | |
max_new_tokens: int = 128, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
conversation += chat_history | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
eos_token_id=tokenizer.eos_token_id, # Stop generation at <EOS> | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Textbox(label="System prompt", lines=6), | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.7, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
), | |
gr.Slider( | |
label="Top-k", | |
minimum=1, | |
maximum=1000, | |
step=1, | |
value=50, | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.2, | |
), | |
], | |
stop_btn=None, | |
examples=[ | |
["السلام عليكم"], | |
["اعرب الجملة التالية: ذهبت الى السوق"], | |
["اضف تشكيل للجملة التالية: ضرب زيدا عمر"], | |
["كم عدد بحور الشعر العربي؟"] | |
], | |
cache_examples=False, | |
type="messages", | |
) | |
with gr.Blocks(css_paths="style.css", fill_height=True) as demo: | |
# def authenticate_token(token): | |
# try: | |
# login(token) | |
# return "Authenticated successfully" | |
# except: | |
# return "Invalid token. Please try again." | |
# # Components | |
# token_input = gr.Textbox(label="Hugging Face Access Token", type="password", placeholder="Enter your token here...") | |
# auth_button = gr.Button("Authenticate") | |
# output = gr.Textbox(label="Output") | |
# auth_button.click(fn=authenticate_token, inputs=token_input, outputs=output) | |
chat_interface.render() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Gradio App with Sharing") | |
parser.add_argument("--share", action="store_true", help="Enable public sharing") | |
args = parser.parse_args() | |
demo.queue(max_size=20).launch(share = args.share) |