Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,555 Bytes
bd97be7 9fe4dba b40af2a bd97be7 d88ec40 bd97be7 b40af2a d88ec40 b40af2a 6befe57 b40af2a 6befe57 d88ec40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import gradio as gr
import torch
from transformers import pipeline
# Check if GPU is available; fallback to CPU if not
device = 0 if torch.cuda.is_available() else -1
try:
# Load models with error handling
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
except Exception as e:
print(f"Error loading models: {e}")
raise
# Function to process audio
def process_audio(audio_file):
try:
# Transcribe the audio
transcription = transcriber(audio_file)["text"]
# Summarize the transcription
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
return transcription, summary
except Exception as e:
return f"Error processing audio: {e}", ""
# Gradio Interface with Horizontal Layout
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
process_button = gr.Button("Process Audio")
with gr.Column():
transcription_output = gr.Textbox(label="Full Transcription", lines=10)
summary_output = gr.Textbox(label="Summary", lines=5)
process_button.click(
process_audio,
inputs=[audio_input],
outputs=[transcription_output, summary_output]
)
# Launch the interface with public sharing and SSR disabled
interface.launch(share=True, ssr=False)
|