AudioTranscribe / app.py
ZennyKenny's picture
remove stale ref
710b2f5 verified
raw
history blame
3.17 kB
import gradio as gr
import torch
from transformers import pipeline
import librosa
import soundfile as sf
import os
import spaces # Ensure spaces is imported
def split_audio(audio_data, sr, chunk_duration=30):
"""Split audio into chunks of chunk_duration seconds."""
chunks = []
for start in range(0, len(audio_data), int(chunk_duration * sr)):
end = start + int(chunk_duration * sr)
chunks.append(audio_data[start:end])
return chunks
def transcribe_long_audio(audio_path, transcriber, chunk_duration=30):
"""Transcribe long audio by splitting into smaller chunks."""
try:
# Load the audio file
audio_data, sr = librosa.load(audio_path, sr=None)
chunks = split_audio(audio_data, sr, chunk_duration)
transcriptions = []
for i, chunk in enumerate(chunks):
chunk_path = f"temp_chunk_{i}.wav"
sf.write(chunk_path, chunk, sr) # Save chunk as WAV
transcription = transcriber(chunk_path)["text"]
transcriptions.append(transcription)
os.remove(chunk_path) # Cleanup temp files
return " ".join(transcriptions)
except Exception as e:
print(f"Error in transcribe_long_audio: {e}")
return f"Error processing audio: {e}"
@spaces.GPU(duration=3)
def main():
device = 0 if torch.cuda.is_available() else -1
try:
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
except Exception as e:
print(f"Error loading models: {e}")
raise
def process_audio(audio_input):
try:
print(f"Processing uploaded audio: {audio_input}")
if not isinstance(audio_input, str):
raise ValueError("Invalid input type. Please upload a valid audio file.")
if os.path.isdir(audio_input):
raise ValueError("Input is a directory, not a file.")
# Transcribe the uploaded audio file
transcription = transcribe_long_audio(audio_input, transcriber, chunk_duration=30)
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
return transcription, summary, audio_input
except Exception as e:
print(f"Error in process_audio: {e}")
return f"Error processing audio: {e}", "", ""
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
# Only support file uploads
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
process_button = gr.Button("Transcribe Audio")
with gr.Column():
transcription_output = gr.Textbox(label="Transcription", lines=10)
summary_output = gr.Textbox(label="Summary", lines=5)
process_button.click(
process_audio,
inputs=[audio_input],
outputs=[transcription_output, summary_output]
)
interface.launch(share=False)
if __name__ == "__main__":
main()