Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
ZennyKenny
commited on
Fix decorator
Browse files
app.py
CHANGED
@@ -1,46 +1,51 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import pipeline
|
|
|
4 |
|
5 |
-
@spaces.GPU(duration=60)
|
|
|
|
|
|
|
6 |
|
7 |
-
# Check if GPU is available; fallback to CPU if not
|
8 |
-
# device = 0 if torch.cuda.is_available() else -1
|
9 |
-
|
10 |
-
try:
|
11 |
-
# Load models with error handling
|
12 |
-
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=cuda)
|
13 |
-
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
14 |
-
except Exception as e:
|
15 |
-
print(f"Error loading models: {e}")
|
16 |
-
raise
|
17 |
-
|
18 |
-
# Function to process audio
|
19 |
-
def process_audio(audio_file):
|
20 |
try:
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
|
25 |
-
return transcription, summary
|
26 |
except Exception as e:
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
process_button = gr.Button("Process Audio")
|
35 |
-
with gr.Column():
|
36 |
-
transcription_output = gr.Textbox(label="Full Transcription", lines=10)
|
37 |
-
summary_output = gr.Textbox(label="Summary", lines=5)
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
inputs=[audio_input],
|
42 |
-
outputs=[transcription_output, summary_output]
|
43 |
-
)
|
44 |
|
45 |
-
#
|
46 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import pipeline
|
4 |
+
import spaces # Ensure spaces library is imported if using GPU decorator
|
5 |
|
6 |
+
@spaces.GPU(duration=60) # Decorator to allocate GPU for the app
|
7 |
+
def main():
|
8 |
+
# Force GPU if available, fallback to CPU
|
9 |
+
device = 0 if torch.cuda.is_available() else -1
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
try:
|
12 |
+
# Load models with explicit device
|
13 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
14 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
|
|
|
|
15 |
except Exception as e:
|
16 |
+
print(f"Error loading models: {e}")
|
17 |
+
raise
|
18 |
+
|
19 |
+
# Function to process audio
|
20 |
+
def process_audio(audio_file):
|
21 |
+
try:
|
22 |
+
# Transcribe the audio
|
23 |
+
transcription = transcriber(audio_file)["text"]
|
24 |
+
# Summarize the transcription
|
25 |
+
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
|
26 |
+
return transcription, summary
|
27 |
+
except Exception as e:
|
28 |
+
return f"Error processing audio: {e}", ""
|
29 |
+
|
30 |
+
# Gradio Interface with Horizontal Layout
|
31 |
+
with gr.Blocks() as interface:
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Column():
|
34 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
35 |
+
process_button = gr.Button("Process Audio")
|
36 |
+
with gr.Column():
|
37 |
+
transcription_output = gr.Textbox(label="Full Transcription", lines=10)
|
38 |
+
summary_output = gr.Textbox(label="Summary", lines=5)
|
39 |
|
40 |
+
process_button.click(
|
41 |
+
process_audio,
|
42 |
+
inputs=[audio_input],
|
43 |
+
outputs=[transcription_output, summary_output]
|
44 |
+
)
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Launch the interface with optional public sharing
|
47 |
+
interface.launch(share=True)
|
|
|
|
|
|
|
48 |
|
49 |
+
# Run the main function
|
50 |
+
if __name__ == "__main__":
|
51 |
+
main()
|