ZennyKenny commited on
Commit
8057378
·
verified ·
1 Parent(s): 8bf702e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -4
app.py CHANGED
@@ -1,9 +1,29 @@
1
  import gradio as gr
2
  import torch
3
  from transformers import pipeline
4
- import spaces # Ensure spaces library is imported if using GPU decorator
5
 
6
- @spaces.GPU(duration=3) # Decorator to allocate GPU for the app
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  def main():
8
  # Force GPU if available, fallback to CPU
9
  device = 0 if torch.cuda.is_available() else -1
@@ -19,8 +39,8 @@ def main():
19
  # Function to process audio
20
  def process_audio(audio_file):
21
  try:
22
- # Transcribe the audio
23
- transcription = transcriber(audio_file)["text"]
24
  # Summarize the transcription
25
  summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
26
  return transcription, summary
 
1
  import gradio as gr
2
  import torch
3
  from transformers import pipeline
4
+ import librosa # For audio processing
5
 
6
+ def split_audio(audio_path, chunk_duration=30):
7
+ """Split audio into chunks of chunk_duration seconds."""
8
+ audio, sr = librosa.load(audio_path, sr=None)
9
+ chunks = []
10
+ for start in range(0, len(audio), int(chunk_duration * sr)):
11
+ end = start + int(chunk_duration * sr)
12
+ chunks.append(audio[start:end])
13
+ return chunks, sr
14
+
15
+ def transcribe_long_audio(audio_path, transcriber, chunk_duration=30):
16
+ """Transcribe long audio by splitting into smaller chunks."""
17
+ chunks, sr = split_audio(audio_path, chunk_duration)
18
+ transcriptions = []
19
+ for chunk in chunks:
20
+ temp_path = "temp_chunk.wav"
21
+ librosa.output.write_wav(temp_path, chunk, sr)
22
+ transcription = transcriber(temp_path)["text"]
23
+ transcriptions.append(transcription)
24
+ return " ".join(transcriptions)
25
+
26
+ @spaces.GPU(duration=3)
27
  def main():
28
  # Force GPU if available, fallback to CPU
29
  device = 0 if torch.cuda.is_available() else -1
 
39
  # Function to process audio
40
  def process_audio(audio_file):
41
  try:
42
+ # Transcribe the audio (long-form support)
43
+ transcription = transcribe_long_audio(audio_file, transcriber, chunk_duration=30)
44
  # Summarize the transcription
45
  summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
46
  return transcription, summary