adirik commited on
Commit
bb7ed14
Β·
1 Parent(s): 19cb3e9

merge CLIPSeg demo

Browse files
Files changed (2) hide show
  1. __pycache__/share_btn.cpython-38.pyc +0 -0
  2. app.py +8 -4
__pycache__/share_btn.cpython-38.pyc ADDED
Binary file (6.99 kB). View file
 
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import os
2
  import torch
3
  import gradio as gr
 
4
  from PIL import Image
5
  import matplotlib.pyplot as plt
6
  from diffusers import DiffusionPipeline
@@ -38,7 +39,7 @@ def read_content(file_path):
38
  return content
39
 
40
 
41
- def predict(dict, reference, scale, seed, step):
42
  width, height = dict["image"].size
43
  if width < height:
44
  factor = width / 512.0
@@ -52,6 +53,8 @@ def predict(dict, reference, scale, seed, step):
52
 
53
  init_image = dict["image"].convert("RGB").resize((width, height))
54
  mask = dict["mask"].convert("RGB").resize((width, height))
 
 
55
  generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
56
  output = pipe(
57
  image=init_image,
@@ -119,8 +122,9 @@ with image_blocks as demo:
119
  with gr.Box():
120
  with gr.Row():
121
  with gr.Column():
122
- image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Source Image")
123
- reference = gr.Image(source='upload', elem_id="image_upload", type="pil", label="Reference Image")
 
124
 
125
  with gr.Column():
126
  image_out = gr.Image(label="Output", elem_id="output-img").style(height=400)
@@ -146,7 +150,7 @@ with image_blocks as demo:
146
  with gr.Column():
147
  gr.Examples(ref_list, inputs=[reference],label="Examples - Reference Image",examples_per_page=12)
148
 
149
- btn.click(fn=predict, inputs=[image, reference, guidance, seed, steps], outputs=[image_out, community_icon, loading_icon, share_button])
150
  share_button.click(None, [], [], _js=share_js)
151
 
152
  gr.HTML(
 
1
  import os
2
  import torch
3
  import gradio as gr
4
+ import numpy as np
5
  from PIL import Image
6
  import matplotlib.pyplot as plt
7
  from diffusers import DiffusionPipeline
 
39
  return content
40
 
41
 
42
+ def predict(dict, text_query, reference, scale, seed, step):
43
  width, height = dict["image"].size
44
  if width < height:
45
  factor = width / 512.0
 
53
 
54
  init_image = dict["image"].convert("RGB").resize((width, height))
55
  mask = dict["mask"].convert("RGB").resize((width, height))
56
+ print(np.array(mask))
57
+ print(text_query)
58
  generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
59
  output = pipe(
60
  image=init_image,
 
122
  with gr.Box():
123
  with gr.Row():
124
  with gr.Column():
125
+ image = gr.Image(source="upload", tool="sketch", elem_id="image_upload", type="pil", label="Source Image")
126
+ text = gr.Textbox(lines=1, placeholder="Clothing item you want to replace...")
127
+ reference = gr.Image(source="upload", elem_id="image_upload", type="pil", label="Reference Image")
128
 
129
  with gr.Column():
130
  image_out = gr.Image(label="Output", elem_id="output-img").style(height=400)
 
150
  with gr.Column():
151
  gr.Examples(ref_list, inputs=[reference],label="Examples - Reference Image",examples_per_page=12)
152
 
153
+ btn.click(fn=predict, inputs=[image, text, reference, guidance, seed, steps], outputs=[image_out, community_icon, loading_icon, share_button])
154
  share_button.click(None, [], [], _js=share_js)
155
 
156
  gr.HTML(