File size: 6,976 Bytes
0f82c62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c48af39
0f82c62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr
import librosa
import numpy as np
import torch
import torch.nn.functional as F
from pathlib import Path

from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan
from speechbrain.pretrained import EncoderClassifier

title = "SpeechT5: Voice Conversion"
description = """ This space can "clone voice" and can do "text to speech" . Special credit goes to "Microsoft" and 
"Speechbrain". Because without their models its not possible to create this space. Enjoy ! """

article = """ """

device = "cuda" if torch.cuda.is_available() else "cpu"

checkpoint = "microsoft/speecht5_vc"
processor_vc = SpeechT5Processor.from_pretrained(checkpoint)
model_vc = SpeechT5ForSpeechToSpeech.from_pretrained(checkpoint)
checkpoint_tts = "microsoft/speecht5_tts"
processor_tts = SpeechT5Processor.from_pretrained(checkpoint_tts)
model_tts = SpeechT5ForTextToSpeech.from_pretrained(checkpoint_tts)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")

model_embed = {
    "speechbrain/spkrec-xvect-voxceleb": 512, 
    "speechbrain/spkrec-ecapa-voxceleb": 192,
}
checkpoint_embed = "speechbrain/spkrec-xvect-voxceleb"
size_embed = model_embed[checkpoint_embed]
embeding_classifier = EncoderClassifier.from_hparams(source=checkpoint_embed, run_opts={"device": device}, savedir="/tmp/speaker_embed")

examples_pt = 'examples'
allowed_extentions = ['.mp3', '.wav']
examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}
default_voice = list(examples.keys())[0]
verse = """Hey how are you doing today ?"""

def process_audio(sampling_rate, waveform, target_sr=16000):
    # convert from int16 to floating point
    waveform = waveform / 32678.0

    # convert to mono if stereo
    if len(waveform.shape) > 1:
        waveform = librosa.to_mono(waveform.T)

    # resample to 16 kHz if necessary
    if sampling_rate != target_sr:
        waveform = librosa.resample(waveform, orig_sr=sampling_rate, target_sr=target_sr)

    # limit to 30 seconds
    waveform = waveform[:target_sr * 30]

    # make PyTorch tensor
    waveform = torch.tensor(waveform)
    return waveform


def f2embed(waveform, sz):
    with torch.no_grad():
        embeddings = embeding_classifier.encode_batch(waveform)
        embeddings = F.normalize(embeddings, dim=2)
        embeddings = embeddings.squeeze().cpu().numpy()
    assert embeddings.shape[0] == sz, embeddings.shape[0]
    return embeddings


def on_voicedropdown(x):
    return examples[x]


def on_voiceload(audio, sz=size_embed):
    print("on_voiceload")
    # audio = tuple (sample_rate, frames) or (sample_rate, (frames, channels))
    if audio is not None:
        sampling_rate, waveform = audio
    else:
        return np.zeros(sz)
    waveform = process_audio(sampling_rate, waveform)
    embed = f2embed(waveform, sz)
    print("Generated embedding", embed[:5])
    return embed


def voice_clone(audio, speaker_embedding, target_sr=16000):
    # audio = tuple (sample_rate, frames) or (sample_rate, (frames, channels))
    if audio is None or speaker_embedding is None:
        return (target_sr, np.zeros(0).astype(np.int16))
    else:
        sampling_rate, waveform = audio

    waveform = process_audio(sampling_rate, waveform)
    inputs = processor_vc(audio=waveform, sampling_rate=target_sr, return_tensors="pt")

    speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)

    speech = model_vc.generate_speech(inputs["input_values"], speaker_embedding, vocoder=vocoder)

    speech = (speech.numpy() * 32767).astype(np.int16)
    return (target_sr, speech)

def text_to_speech(text, speaker_embedding, target_sr=16000):
    if len(text.strip()) == 0 or speaker_embedding is None:
        return (target_sr, np.zeros(0).astype(np.int16))
    
    inputs = processor_tts(text=text, return_tensors="pt")
    # limit input length
    input_ids = inputs["input_ids"]
    input_ids = input_ids[..., :model_tts.config.max_text_positions]

    speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)

    speech = model_tts.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)

    speech = (speech.numpy() * 32767).astype(np.int16)
    return (target_sr, speech)

theme = gr.themes.Monochrome()
with gr.Blocks() as demo:
    voice_embedding = gr.State(None)
    def activate(*args):
        return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)
    def deactivate(*args):
        return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)

    gr.Markdown(description)
    
    with gr.Accordion("Voice to clone", open=False) as accordion:
        gr.Markdown("Upload target voice...")
        with gr.Row(equal_height=True):
            voice_upload = gr.Audio(label="Upload target voice", source="upload", type="numpy")
            voice_dropdown = gr.Dropdown(examples, label='Examples', interactive=True)

#         TODO: couldn't catch microphone stop event
#         mic = gr.Audio(label="Record Speech", source="microphone", type="numpy")
#         mic.stop(fn=lambda x: print('mic stop'), inputs=None, outputs=None)
    
    with gr.Row(equal_height=True):
        with gr.Column(scale=2):
            with gr.Row(equal_height=True):
                text_to_convert = gr.Textbox(verse)
                voice_to_convert = gr.Audio(label="Upload voice to convert", source="upload", type="numpy")
            with gr.Row(equal_height=True):
                button_text = gr.Button("Text to speech", interactive=False)
                button_audio = gr.Button("Convert audio", interactive=False)
    with gr.Row(equal_height=True):
        speech = gr.Audio(label="Converted Speech", type="numpy", visible=True, interactive=False)        

    # actions
    kwargs = dict(fn=on_voiceload, inputs=voice_upload, outputs=voice_embedding)
    voice_upload.upload(deactivate, [button_text, button_audio], [button_text, button_audio]).\
        then(**kwargs).then(activate, [button_text, button_audio], [button_text, button_audio])
    voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
        then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\
        then(**kwargs).then(activate, [button_text, button_audio], [button_text, button_audio])
    button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
        then(fn=text_to_speech, inputs=[text_to_convert, voice_embedding], outputs=speech).\
        then(activate, [button_text, button_audio], [button_text, button_audio])
    button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
        then(fn=voice_clone, inputs=[voice_to_convert, voice_embedding], outputs=speech).\
        then(activate, [button_text, button_audio], [button_text, button_audio])
    
    gr.HTML(article)
demo.launch(share=False)