import os from langchain_community.embeddings import SentenceTransformerEmbeddings from langchain_community.document_loaders import UnstructuredFileLoader, DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Qdrant embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings") loader = DirectoryLoader('data/', glob="**/*.pdf", show_progress=True, loader_cls=UnstructuredFileLoader) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=70) texts = text_splitter.split_documents(documents) # url = "http://127.0.0.1:6333" # This is the same URL that must match Step 4d qdrant_api_key = 'ic_WPSW7zUEOYzJIbHAYKVUxTf7xVXxFfJgTN6UsnvcuXGwkRPGx3g' qdrant_url = 'https://ea51a65a-6fad-48ce-b571-846d3b496882.us-east4-0.gcp.cloud.qdrant.io' qdrant = Qdrant.from_documents( texts, embeddings, url=qdrant_url, port=6333, api_key=qdrant_api_key, prefer_grpc=False, collection_name="vector_db" ) print("Vector DB Successfully Created!")