Spaces:
Running on CPU Upgrade

akhaliq HF staff commited on
Commit
1d9fb1e
1 Parent(s): 9e689c6

add compare mode

Browse files
Files changed (2) hide show
  1. app.py +2 -0
  2. app_compare.py +210 -0
app.py CHANGED
@@ -26,12 +26,14 @@ from app_openai_voice import demo as demo_openai_voice
26
  from app_qwen import demo as demo_qwen
27
  from app_deepseek import demo as demo_deepseek
28
  from app_crew import demo as demo_crew
 
29
  from app_hyperbolic import demo as demo_hyperbolic
30
  from utils import get_app
31
 
32
  # Create mapping of providers to their demos
33
  PROVIDERS = {
34
  "DeepSeek": demo_deepseek,
 
35
  "Qwen" : demo_qwen,
36
  "Gemini": demo_gemini,
37
  "OpenAI Voice": demo_openai_voice,
 
26
  from app_qwen import demo as demo_qwen
27
  from app_deepseek import demo as demo_deepseek
28
  from app_crew import demo as demo_crew
29
+ from app_compare import demo as demo_compare
30
  from app_hyperbolic import demo as demo_hyperbolic
31
  from utils import get_app
32
 
33
  # Create mapping of providers to their demos
34
  PROVIDERS = {
35
  "DeepSeek": demo_deepseek,
36
+ "Compare": demo_compare,
37
  "Qwen" : demo_qwen,
38
  "Gemini": demo_gemini,
39
  "OpenAI Voice": demo_openai_voice,
app_compare.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ from typing import Dict, List
4
+
5
+ import google.generativeai as genai
6
+ import gradio as gr
7
+ import openai
8
+ from anthropic import Anthropic
9
+ from openai import OpenAI # Add explicit OpenAI import
10
+
11
+
12
+ def get_all_models():
13
+ """Get all available models from the registries."""
14
+ return [
15
+ "SambaNova: Meta-Llama-3.2-1B-Instruct",
16
+ "SambaNova: Meta-Llama-3.2-3B-Instruct",
17
+ "SambaNova: Llama-3.2-11B-Vision-Instruct",
18
+ "SambaNova: Llama-3.2-90B-Vision-Instruct",
19
+ "SambaNova: Meta-Llama-3.1-8B-Instruct",
20
+ "SambaNova: Meta-Llama-3.1-70B-Instruct",
21
+ "SambaNova: Meta-Llama-3.1-405B-Instruct",
22
+ "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct",
23
+ "Hyperbolic: meta-llama/Llama-3.2-3B-Instruct",
24
+ "Hyperbolic: meta-llama/Meta-Llama-3.1-8B-Instruct",
25
+ "Hyperbolic: meta-llama/Meta-Llama-3.1-70B-Instruct",
26
+ "Hyperbolic: meta-llama/Meta-Llama-3-70B-Instruct",
27
+ "Hyperbolic: NousResearch/Hermes-3-Llama-3.1-70B",
28
+ "Hyperbolic: Qwen/Qwen2.5-72B-Instruct",
29
+ "Hyperbolic: deepseek-ai/DeepSeek-V2.5",
30
+ "Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct",
31
+ ]
32
+
33
+
34
+ def generate_discussion_prompt(original_question: str, previous_responses: List[str]) -> str:
35
+ """Generate a prompt for models to discuss and build upon previous
36
+ responses."""
37
+ prompt = f"""You are participating in a multi-AI discussion about this question: "{original_question}"
38
+
39
+ Previous responses from other AI models:
40
+ {chr(10).join(f"- {response}" for response in previous_responses)}
41
+
42
+ Please provide your perspective while:
43
+ 1. Acknowledging key insights from previous responses
44
+ 2. Adding any missing important points
45
+ 3. Respectfully noting if you disagree with anything and explaining why
46
+ 4. Building towards a complete answer
47
+
48
+ Keep your response focused and concise (max 3-4 paragraphs)."""
49
+ return prompt
50
+
51
+
52
+ def generate_consensus_prompt(original_question: str, discussion_history: List[str]) -> str:
53
+ """Generate a prompt for final consensus building."""
54
+ return f"""Review this multi-AI discussion about: "{original_question}"
55
+
56
+ Discussion history:
57
+ {chr(10).join(discussion_history)}
58
+
59
+ As a final synthesizer, please:
60
+ 1. Identify the key points where all models agreed
61
+ 2. Explain how any disagreements were resolved
62
+ 3. Present a clear, unified answer that represents our collective best understanding
63
+ 4. Note any remaining uncertainties or caveats
64
+
65
+ Keep the final consensus concise but complete."""
66
+
67
+
68
+ def chat_with_openai(model: str, messages: List[Dict], api_key: str | None) -> str:
69
+ import openai
70
+
71
+ client = openai.OpenAI(api_key=api_key)
72
+ response = client.chat.completions.create(model=model, messages=messages)
73
+ return response.choices[0].message.content
74
+
75
+
76
+ def chat_with_anthropic(messages: List[Dict], api_key: str | None) -> str:
77
+ """Chat with Anthropic's Claude model."""
78
+ client = Anthropic(api_key=api_key)
79
+ response = client.messages.create(model="claude-3-sonnet-20240229", messages=messages, max_tokens=1024)
80
+ return response.content[0].text
81
+
82
+
83
+ def chat_with_gemini(messages: List[Dict], api_key: str | None) -> str:
84
+ """Chat with Gemini Pro model."""
85
+ genai.configure(api_key=api_key)
86
+ model = genai.GenerativeModel("gemini-pro")
87
+
88
+ # Convert messages to Gemini format
89
+ gemini_messages = []
90
+ for msg in messages:
91
+ role = "user" if msg["role"] == "user" else "model"
92
+ gemini_messages.append({"role": role, "parts": [msg["content"]]})
93
+
94
+ response = model.generate_content([m["parts"][0] for m in gemini_messages])
95
+ return response.text
96
+
97
+
98
+ def chat_with_sambanova(
99
+ messages: List[Dict], api_key: str | None, model_name: str = "Llama-3.2-90B-Vision-Instruct"
100
+ ) -> str:
101
+ """Chat with SambaNova's models using their OpenAI-compatible API."""
102
+ client = openai.OpenAI(
103
+ api_key=api_key,
104
+ base_url="https://api.sambanova.ai/v1",
105
+ )
106
+
107
+ response = client.chat.completions.create(
108
+ model=model_name, messages=messages, temperature=0.1, top_p=0.1 # Use the specific model name passed in
109
+ )
110
+ return response.choices[0].message.content
111
+
112
+
113
+ def chat_with_hyperbolic(
114
+ messages: List[Dict], api_key: str | None, model_name: str = "Qwen/Qwen2.5-Coder-32B-Instruct"
115
+ ) -> str:
116
+ """Chat with Hyperbolic's models using their OpenAI-compatible API."""
117
+ client = OpenAI(api_key=api_key, base_url="https://api.hyperbolic.xyz/v1")
118
+
119
+ # Add system message to the start of the messages list
120
+ full_messages = [
121
+ {"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."},
122
+ *messages,
123
+ ]
124
+
125
+ response = client.chat.completions.create(
126
+ model=model_name, # Use the specific model name passed in
127
+ messages=full_messages,
128
+ temperature=0.7,
129
+ max_tokens=1024,
130
+ )
131
+ return response.choices[0].message.content
132
+
133
+
134
+ def multi_model_consensus(
135
+ question: str, selected_models: List[str], rounds: int = 3, progress: gr.Progress = gr.Progress()
136
+ ) -> list[tuple[str, str]]:
137
+ if not selected_models:
138
+ raise gr.Error("Please select at least one model to chat with.")
139
+
140
+ chat_history = []
141
+ progress(0, desc="Getting responses from all models...")
142
+
143
+ # Get responses from all models in parallel
144
+ for i, model in enumerate(selected_models):
145
+ provider, model_name = model.split(": ", 1)
146
+ progress((i + 1) / len(selected_models), desc=f"Getting response from {model}...")
147
+
148
+ try:
149
+ if provider == "Anthropic":
150
+ api_key = os.getenv("ANTHROPIC_API_KEY")
151
+ response = chat_with_anthropic(messages=[{"role": "user", "content": question}], api_key=api_key)
152
+ elif provider == "SambaNova":
153
+ api_key = os.getenv("SAMBANOVA_API_KEY")
154
+ response = chat_with_sambanova(
155
+ messages=[
156
+ {"role": "system", "content": "You are a helpful assistant"},
157
+ {"role": "user", "content": question},
158
+ ],
159
+ api_key=api_key,
160
+ model_name=model_name,
161
+ )
162
+ elif provider == "Hyperbolic":
163
+ api_key = os.getenv("HYPERBOLIC_API_KEY")
164
+ response = chat_with_hyperbolic(
165
+ messages=[{"role": "user", "content": question}],
166
+ api_key=api_key,
167
+ model_name=model_name,
168
+ )
169
+ else: # Gemini
170
+ api_key = os.getenv("GEMINI_API_KEY")
171
+ response = chat_with_gemini(messages=[{"role": "user", "content": question}], api_key=api_key)
172
+
173
+ chat_history.append((model, response))
174
+ except Exception as e:
175
+ chat_history.append((model, f"Error: {str(e)}"))
176
+
177
+ progress(1.0, desc="Done!")
178
+ return chat_history
179
+
180
+
181
+ with gr.Blocks() as demo:
182
+ gr.Markdown("# Model Response Comparison")
183
+ gr.Markdown(
184
+ """Select multiple models to compare their responses"""
185
+ )
186
+
187
+ with gr.Row():
188
+ with gr.Column():
189
+ model_selector = gr.Dropdown(
190
+ choices=get_all_models(),
191
+ multiselect=True,
192
+ label="Select Models",
193
+ info="Choose models to compare",
194
+ value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"],
195
+ )
196
+
197
+ chatbot = gr.Chatbot(height=600, label="Model Responses")
198
+ msg = gr.Textbox(label="Prompt", placeholder="Ask a question to compare model responses...")
199
+
200
+ def respond(message, selected_models):
201
+ chat_history = multi_model_consensus(message, selected_models, rounds=1)
202
+ return chat_history
203
+
204
+ msg.submit(respond, [msg, model_selector], [chatbot])
205
+
206
+ for fn in demo.fns.values():
207
+ fn.api_name = False
208
+
209
+ if __name__ == "__main__":
210
+ demo.launch()