Spaces:
Running on CPU Upgrade

hysts HF staff commited on
Commit
7360ef0
1 Parent(s): 35d8419

apply pre-commit

Browse files
Files changed (14) hide show
  1. README.md +1 -1
  2. app.py +16 -25
  3. app_allenai.py +19 -25
  4. app_cohere.py +1 -1
  5. app_gemini_voice.py +46 -55
  6. app_huggingface.py +23 -37
  7. app_lumaai.py +2 -2
  8. app_meta.py +1 -1
  9. app_mindsearch.py +2 -2
  10. app_paligemma.py +31 -51
  11. app_playai.py +3 -3
  12. app_showui.py +1 -1
  13. app_trellis.py +1 -1
  14. utils.py +1 -1
README.md CHANGED
@@ -10,4 +10,4 @@ pinned: false
10
  disable_embedding: true
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
10
  disable_embedding: true
11
  ---
12
 
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,34 +1,32 @@
1
- from utils import get_app
2
-
3
 
4
  # Import all demos
5
  from app_cohere import demo as demo_cohere
6
- from app_meta import demo as demo_meta
7
- from app_lumaai import demo as demo_lumaai
8
- from app_paligemma import demo as demo_paligemma
9
- from app_replicate import demo as demo_replicate
10
- from app_huggingface import demo as demo_huggingface
11
- from app_playai import demo as demo_playai
12
- from app_allenai import demo as demo_allenai
13
- from app_claude import demo as demo_claude
14
  from app_experimental import demo as demo_experimental
 
15
  from app_fireworks import demo as demo_fireworks
16
  from app_gemini import demo as demo_gemini
 
17
  from app_groq import demo as demo_groq
 
18
  from app_hyperbolic import demo as demo_hyperbolic
19
- from app_fal import demo as demo_fal
 
20
  from app_mistral import demo as demo_mistral
21
  from app_nvidia import demo as demo_nvidia
 
22
  from app_openai import demo as demo_openai
 
23
  from app_perplexity import demo as demo_perplexity
 
24
  from app_qwen import demo as demo_qwen
 
25
  from app_sambanova import demo as demo_sambanova
 
26
  from app_together import demo as demo_together
27
  from app_xai import demo as demo_grok
28
- from app_showui import demo as demo_showui
29
- from app_omini import demo as demo_omini
30
- from app_gemini_voice import demo as demo_gemini_voice
31
-
32
 
33
  # Create mapping of providers to their demos
34
  PROVIDERS = {
@@ -57,19 +55,12 @@ PROVIDERS = {
57
  "Perplexity": demo_perplexity,
58
  "Experimental": demo_experimental,
59
  "Mistral": demo_mistral,
60
- "NVIDIA": demo_nvidia
61
  }
62
 
63
- demo = get_app(
64
- models=list(PROVIDERS.keys()),
65
- default_model="Gemini",
66
- src=PROVIDERS,
67
- dropdown_label="Select Provider"
68
- )
69
 
70
  if __name__ == "__main__":
71
  demo.queue(
72
  api_open=False,
73
- ).launch(
74
- show_api=False
75
- )
 
1
+ from app_allenai import demo as demo_allenai
2
+ from app_claude import demo as demo_claude
3
 
4
  # Import all demos
5
  from app_cohere import demo as demo_cohere
 
 
 
 
 
 
 
 
6
  from app_experimental import demo as demo_experimental
7
+ from app_fal import demo as demo_fal
8
  from app_fireworks import demo as demo_fireworks
9
  from app_gemini import demo as demo_gemini
10
+ from app_gemini_voice import demo as demo_gemini_voice
11
  from app_groq import demo as demo_groq
12
+ from app_huggingface import demo as demo_huggingface
13
  from app_hyperbolic import demo as demo_hyperbolic
14
+ from app_lumaai import demo as demo_lumaai
15
+ from app_meta import demo as demo_meta
16
  from app_mistral import demo as demo_mistral
17
  from app_nvidia import demo as demo_nvidia
18
+ from app_omini import demo as demo_omini
19
  from app_openai import demo as demo_openai
20
+ from app_paligemma import demo as demo_paligemma
21
  from app_perplexity import demo as demo_perplexity
22
+ from app_playai import demo as demo_playai
23
  from app_qwen import demo as demo_qwen
24
+ from app_replicate import demo as demo_replicate
25
  from app_sambanova import demo as demo_sambanova
26
+ from app_showui import demo as demo_showui
27
  from app_together import demo as demo_together
28
  from app_xai import demo as demo_grok
29
+ from utils import get_app
 
 
 
30
 
31
  # Create mapping of providers to their demos
32
  PROVIDERS = {
 
55
  "Perplexity": demo_perplexity,
56
  "Experimental": demo_experimental,
57
  "Mistral": demo_mistral,
58
+ "NVIDIA": demo_nvidia,
59
  }
60
 
61
+ demo = get_app(models=list(PROVIDERS.keys()), default_model="Gemini", src=PROVIDERS, dropdown_label="Select Provider")
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.queue(
65
  api_open=False,
66
+ ).launch(show_api=False)
 
 
app_allenai.py CHANGED
@@ -1,10 +1,8 @@
1
- from gradio_client import Client
2
  import gradio as gr
 
 
 
3
 
4
- MODELS = {
5
- "OLMo-2-1124-13B-Instruct": "akhaliq/olmo-anychat",
6
- "Llama-3.1-Tulu-3-8B": "akhaliq/allen-test"
7
- }
8
 
9
  def create_chat_fn(client):
10
  def chat(message, history):
@@ -16,51 +14,49 @@ def create_chat_fn(client):
16
  top_k=40,
17
  repetition_penalty=1.1,
18
  top_p=0.95,
19
- api_name="/chat"
20
  )
21
  return response
 
22
  return chat
23
 
 
24
  def set_client_for_session(model_name, request: gr.Request):
25
  headers = {}
26
- if request and hasattr(request, 'request') and hasattr(request.request, 'headers'):
27
- x_ip_token = request.request.headers.get('x-ip-token')
28
  if x_ip_token:
29
  headers["X-IP-Token"] = x_ip_token
30
-
31
  return Client(MODELS[model_name], headers=headers)
32
 
 
33
  def safe_chat_fn(message, history, client):
34
  if client is None:
35
  return "Error: Client not initialized. Please refresh the page."
36
  return create_chat_fn(client)(message, history)
37
 
 
38
  with gr.Blocks() as demo:
39
-
40
  client = gr.State()
41
-
42
  model_dropdown = gr.Dropdown(
43
- choices=list(MODELS.keys()),
44
- value="OLMo-2-1124-13B-Instruct",
45
- label="Select Model",
46
- interactive=True
47
- )
48
-
49
- chat_interface = gr.ChatInterface(
50
- fn=safe_chat_fn,
51
- additional_inputs=[client]
52
  )
53
-
 
 
54
  # Update client when model changes
55
  def update_model(model_name, request):
56
  return set_client_for_session(model_name, request)
57
-
58
  model_dropdown.change(
59
  fn=update_model,
60
  inputs=[model_dropdown],
61
  outputs=[client],
62
  )
63
-
64
  # Initialize client on page load
65
  demo.load(
66
  fn=set_client_for_session,
@@ -69,5 +65,3 @@ with gr.Blocks() as demo:
69
  )
70
 
71
  demo = demo
72
-
73
-
 
 
1
  import gradio as gr
2
+ from gradio_client import Client
3
+
4
+ MODELS = {"OLMo-2-1124-13B-Instruct": "akhaliq/olmo-anychat", "Llama-3.1-Tulu-3-8B": "akhaliq/allen-test"}
5
 
 
 
 
 
6
 
7
  def create_chat_fn(client):
8
  def chat(message, history):
 
14
  top_k=40,
15
  repetition_penalty=1.1,
16
  top_p=0.95,
17
+ api_name="/chat",
18
  )
19
  return response
20
+
21
  return chat
22
 
23
+
24
  def set_client_for_session(model_name, request: gr.Request):
25
  headers = {}
26
+ if request and hasattr(request, "request") and hasattr(request.request, "headers"):
27
+ x_ip_token = request.request.headers.get("x-ip-token")
28
  if x_ip_token:
29
  headers["X-IP-Token"] = x_ip_token
30
+
31
  return Client(MODELS[model_name], headers=headers)
32
 
33
+
34
  def safe_chat_fn(message, history, client):
35
  if client is None:
36
  return "Error: Client not initialized. Please refresh the page."
37
  return create_chat_fn(client)(message, history)
38
 
39
+
40
  with gr.Blocks() as demo:
41
+
42
  client = gr.State()
43
+
44
  model_dropdown = gr.Dropdown(
45
+ choices=list(MODELS.keys()), value="OLMo-2-1124-13B-Instruct", label="Select Model", interactive=True
 
 
 
 
 
 
 
 
46
  )
47
+
48
+ chat_interface = gr.ChatInterface(fn=safe_chat_fn, additional_inputs=[client])
49
+
50
  # Update client when model changes
51
  def update_model(model_name, request):
52
  return set_client_for_session(model_name, request)
53
+
54
  model_dropdown.change(
55
  fn=update_model,
56
  inputs=[model_dropdown],
57
  outputs=[client],
58
  )
59
+
60
  # Initialize client on page load
61
  demo.load(
62
  fn=set_client_for_session,
 
65
  )
66
 
67
  demo = demo
 
 
app_cohere.py CHANGED
@@ -18,4 +18,4 @@ demo = get_app(
18
  )
19
 
20
  if __name__ == "__main__":
21
- demo.launch()
 
18
  )
19
 
20
  if __name__ == "__main__":
21
+ demo.launch()
app_gemini_voice.py CHANGED
@@ -1,36 +1,41 @@
1
- import gradio as gr
2
- from gradio_webrtc import WebRTC, StreamHandler, get_twilio_turn_credentials
3
- import websockets.sync.client
4
- import numpy as np
5
- import json
6
  import base64
 
7
  import os
 
 
 
 
8
  from dotenv import load_dotenv
 
 
9
 
10
  class GeminiConfig:
11
  def __init__(self):
12
  load_dotenv()
13
  self.api_key = self._get_api_key()
14
- self.host = 'generativelanguage.googleapis.com'
15
- self.model = 'models/gemini-2.0-flash-exp'
16
- self.ws_url = f'wss://{self.host}/ws/google.ai.generativelanguage.v1alpha.GenerativeService.BidiGenerateContent?key={self.api_key}'
17
 
18
  def _get_api_key(self):
19
- api_key = os.getenv('GOOGLE_API_KEY')
20
  if not api_key:
21
  raise ValueError("GOOGLE_API_KEY not found in environment variables. Please set it in your .env file.")
22
  return api_key
23
 
 
24
  class AudioProcessor:
25
  @staticmethod
26
  def encode_audio(data, sample_rate):
27
- encoded = base64.b64encode(data.tobytes()).decode('UTF-8')
28
  return {
29
- 'realtimeInput': {
30
- 'mediaChunks': [{
31
- 'mimeType': f'audio/pcm;rate={sample_rate}',
32
- 'data': encoded,
33
- }],
 
 
34
  },
35
  }
36
 
@@ -39,13 +44,10 @@ class AudioProcessor:
39
  audio_data = base64.b64decode(data)
40
  return np.frombuffer(audio_data, dtype=np.int16)
41
 
 
42
  class GeminiHandler(StreamHandler):
43
- def __init__(self,
44
- expected_layout="mono",
45
- output_sample_rate=24000,
46
- output_frame_size=480) -> None:
47
- super().__init__(expected_layout, output_sample_rate, output_frame_size,
48
- input_sample_rate=24000)
49
  self.config = GeminiConfig()
50
  self.ws = None
51
  self.all_output_data = None
@@ -55,18 +57,15 @@ class GeminiHandler(StreamHandler):
55
  return GeminiHandler(
56
  expected_layout=self.expected_layout,
57
  output_sample_rate=self.output_sample_rate,
58
- output_frame_size=self.output_frame_size
59
  )
60
 
61
  def _initialize_websocket(self):
62
  try:
63
- self.ws = websockets.sync.client.connect(
64
- self.config.ws_url,
65
- timeout=30
66
- )
67
  initial_request = {
68
- 'setup': {
69
- 'model': self.config.model,
70
  }
71
  }
72
  self.ws.send(json.dumps(initial_request))
@@ -87,7 +86,7 @@ class GeminiHandler(StreamHandler):
87
  _, array = frame
88
  array = array.squeeze()
89
  audio_message = self.audio_processor.encode_audio(array, self.output_sample_rate)
90
- self.ws.send(json.dumps(audio_message))
91
  except Exception as e:
92
  print(f"Error in receive: {str(e)}")
93
  if self.ws:
@@ -95,8 +94,8 @@ class GeminiHandler(StreamHandler):
95
  self.ws = None
96
 
97
  def _process_server_content(self, content):
98
- for part in content.get('parts', []):
99
- data = part.get('inlineData', {}).get('data', '')
100
  if data:
101
  audio_array = self.audio_processor.process_audio_response(data)
102
  if self.all_output_data is None:
@@ -105,9 +104,8 @@ class GeminiHandler(StreamHandler):
105
  self.all_output_data = np.concatenate((self.all_output_data, audio_array))
106
 
107
  while self.all_output_data.shape[-1] >= self.output_frame_size:
108
- yield (self.output_sample_rate,
109
- self.all_output_data[:self.output_frame_size].reshape(1, -1))
110
- self.all_output_data = self.all_output_data[self.output_frame_size:]
111
 
112
  def generator(self):
113
  while True:
@@ -120,8 +118,8 @@ class GeminiHandler(StreamHandler):
120
  message = self.ws.recv(timeout=5)
121
  msg = json.loads(message)
122
 
123
- if 'serverContent' in msg:
124
- content = msg['serverContent'].get('modelTurn', {})
125
  yield from self._process_server_content(content)
126
  except TimeoutError:
127
  print("Timeout waiting for server response")
@@ -133,7 +131,7 @@ class GeminiHandler(StreamHandler):
133
  def emit(self) -> tuple[int, np.ndarray] | None:
134
  if not self.ws:
135
  return None
136
- if not hasattr(self, '_generator'):
137
  self._generator = self.generator()
138
  try:
139
  return next(self._generator)
@@ -142,8 +140,8 @@ class GeminiHandler(StreamHandler):
142
  return None
143
 
144
  def reset(self) -> None:
145
- if hasattr(self, '_generator'):
146
- delattr(self, '_generator')
147
  self.all_output_data = None
148
 
149
  def shutdown(self) -> None:
@@ -159,6 +157,7 @@ class GeminiHandler(StreamHandler):
159
  print(f"Connection check failed: {str(e)}")
160
  return False
161
 
 
162
  class GeminiVoiceChat:
163
  def __init__(self):
164
  load_dotenv()
@@ -166,38 +165,30 @@ class GeminiVoiceChat:
166
 
167
  def _create_interface(self):
168
  with gr.Blocks() as demo:
169
- gr.HTML("""
 
170
  <div style='text-align: center'>
171
  <h1>Gemini 2.0 Voice Chat</h1>
172
  <p>Speak with Gemini using real-time audio streaming</p>
173
  </div>
174
- """)
 
175
 
176
  webrtc = WebRTC(
177
  label="Conversation",
178
  modality="audio",
179
  mode="send-receive",
180
- rtc_configuration=get_twilio_turn_credentials()
181
  )
182
 
183
- webrtc.stream(
184
- GeminiHandler(),
185
- inputs=[webrtc],
186
- outputs=[webrtc],
187
- time_limit=90,
188
- concurrency_limit=10
189
- )
190
  return demo
191
 
192
  def launch(self):
193
  self.demo.launch()
194
- # Create and expose the demo instance
195
- def demo():
196
- chat = GeminiVoiceChat()
197
- return chat.demo
198
 
199
- # This is what will be imported by app.py
200
- demo = demo()
201
 
202
  if __name__ == "__main__":
203
  demo.launch(server_name="0.0.0.0")
 
 
 
 
 
 
1
  import base64
2
+ import json
3
  import os
4
+
5
+ import gradio as gr
6
+ import numpy as np
7
+ import websockets.sync.client
8
  from dotenv import load_dotenv
9
+ from gradio_webrtc import StreamHandler, WebRTC, get_twilio_turn_credentials
10
+
11
 
12
  class GeminiConfig:
13
  def __init__(self):
14
  load_dotenv()
15
  self.api_key = self._get_api_key()
16
+ self.host = "generativelanguage.googleapis.com"
17
+ self.model = "models/gemini-2.0-flash-exp"
18
+ self.ws_url = f"wss://{self.host}/ws/google.ai.generativelanguage.v1alpha.GenerativeService.BidiGenerateContent?key={self.api_key}"
19
 
20
  def _get_api_key(self):
21
+ api_key = os.getenv("GOOGLE_API_KEY")
22
  if not api_key:
23
  raise ValueError("GOOGLE_API_KEY not found in environment variables. Please set it in your .env file.")
24
  return api_key
25
 
26
+
27
  class AudioProcessor:
28
  @staticmethod
29
  def encode_audio(data, sample_rate):
30
+ encoded = base64.b64encode(data.tobytes()).decode("UTF-8")
31
  return {
32
+ "realtimeInput": {
33
+ "mediaChunks": [
34
+ {
35
+ "mimeType": f"audio/pcm;rate={sample_rate}",
36
+ "data": encoded,
37
+ }
38
+ ],
39
  },
40
  }
41
 
 
44
  audio_data = base64.b64decode(data)
45
  return np.frombuffer(audio_data, dtype=np.int16)
46
 
47
+
48
  class GeminiHandler(StreamHandler):
49
+ def __init__(self, expected_layout="mono", output_sample_rate=24000, output_frame_size=480) -> None:
50
+ super().__init__(expected_layout, output_sample_rate, output_frame_size, input_sample_rate=24000)
 
 
 
 
51
  self.config = GeminiConfig()
52
  self.ws = None
53
  self.all_output_data = None
 
57
  return GeminiHandler(
58
  expected_layout=self.expected_layout,
59
  output_sample_rate=self.output_sample_rate,
60
+ output_frame_size=self.output_frame_size,
61
  )
62
 
63
  def _initialize_websocket(self):
64
  try:
65
+ self.ws = websockets.sync.client.connect(self.config.ws_url, timeout=30)
 
 
 
66
  initial_request = {
67
+ "setup": {
68
+ "model": self.config.model,
69
  }
70
  }
71
  self.ws.send(json.dumps(initial_request))
 
86
  _, array = frame
87
  array = array.squeeze()
88
  audio_message = self.audio_processor.encode_audio(array, self.output_sample_rate)
89
+ self.ws.send(json.dumps(audio_message)) # type: ignore
90
  except Exception as e:
91
  print(f"Error in receive: {str(e)}")
92
  if self.ws:
 
94
  self.ws = None
95
 
96
  def _process_server_content(self, content):
97
+ for part in content.get("parts", []):
98
+ data = part.get("inlineData", {}).get("data", "")
99
  if data:
100
  audio_array = self.audio_processor.process_audio_response(data)
101
  if self.all_output_data is None:
 
104
  self.all_output_data = np.concatenate((self.all_output_data, audio_array))
105
 
106
  while self.all_output_data.shape[-1] >= self.output_frame_size:
107
+ yield (self.output_sample_rate, self.all_output_data[: self.output_frame_size].reshape(1, -1))
108
+ self.all_output_data = self.all_output_data[self.output_frame_size :]
 
109
 
110
  def generator(self):
111
  while True:
 
118
  message = self.ws.recv(timeout=5)
119
  msg = json.loads(message)
120
 
121
+ if "serverContent" in msg:
122
+ content = msg["serverContent"].get("modelTurn", {})
123
  yield from self._process_server_content(content)
124
  except TimeoutError:
125
  print("Timeout waiting for server response")
 
131
  def emit(self) -> tuple[int, np.ndarray] | None:
132
  if not self.ws:
133
  return None
134
+ if not hasattr(self, "_generator"):
135
  self._generator = self.generator()
136
  try:
137
  return next(self._generator)
 
140
  return None
141
 
142
  def reset(self) -> None:
143
+ if hasattr(self, "_generator"):
144
+ delattr(self, "_generator")
145
  self.all_output_data = None
146
 
147
  def shutdown(self) -> None:
 
157
  print(f"Connection check failed: {str(e)}")
158
  return False
159
 
160
+
161
  class GeminiVoiceChat:
162
  def __init__(self):
163
  load_dotenv()
 
165
 
166
  def _create_interface(self):
167
  with gr.Blocks() as demo:
168
+ gr.HTML(
169
+ """
170
  <div style='text-align: center'>
171
  <h1>Gemini 2.0 Voice Chat</h1>
172
  <p>Speak with Gemini using real-time audio streaming</p>
173
  </div>
174
+ """
175
+ )
176
 
177
  webrtc = WebRTC(
178
  label="Conversation",
179
  modality="audio",
180
  mode="send-receive",
181
+ rtc_configuration=get_twilio_turn_credentials(),
182
  )
183
 
184
+ webrtc.stream(GeminiHandler(), inputs=[webrtc], outputs=[webrtc], time_limit=90, concurrency_limit=10)
 
 
 
 
 
 
185
  return demo
186
 
187
  def launch(self):
188
  self.demo.launch()
 
 
 
 
189
 
190
+
191
+ demo = GeminiVoiceChat().demo
192
 
193
  if __name__ == "__main__":
194
  demo.launch(server_name="0.0.0.0")
app_huggingface.py CHANGED
@@ -1,21 +1,18 @@
1
- from gradio_client import Client, handle_file
2
  import gradio as gr
3
- import os
4
 
 
5
 
6
- MODELS = {
7
- "SmolVLM-Instruct": "akhaliq/SmolVLM-Instruct"
8
- }
9
 
10
  def create_chat_fn(client):
11
  def chat(message, history):
12
  # Extract text and files from the message
13
  text = message.get("text", "")
14
  files = message.get("files", [])
15
-
16
  # Handle file uploads if present
17
  processed_files = [handle_file(f) for f in files]
18
-
19
  response = client.predict(
20
  message={"text": text, "files": processed_files},
21
  system_prompt="You are a helpful AI assistant.",
@@ -24,20 +21,23 @@ def create_chat_fn(client):
24
  top_k=40,
25
  repetition_penalty=1.1,
26
  top_p=0.95,
27
- api_name="/chat"
28
  )
29
  return response
 
30
  return chat
31
 
 
32
  def set_client_for_session(model_name, request: gr.Request):
33
  headers = {}
34
- if request and hasattr(request, 'headers'):
35
- x_ip_token = request.headers.get('x-ip-token')
36
  if x_ip_token:
37
  headers["X-IP-Token"] = x_ip_token
38
-
39
  return Client(MODELS[model_name], headers=headers)
40
 
 
41
  def safe_chat_fn(message, history, client):
42
  if client is None:
43
  return "Error: Client not initialized. Please refresh the page."
@@ -47,36 +47,22 @@ def safe_chat_fn(message, history, client):
47
  print(f"Error during chat: {str(e)}")
48
  return f"Error during chat: {str(e)}"
49
 
 
50
  with gr.Blocks() as demo:
51
-
52
  client = gr.State()
53
-
54
  model_dropdown = gr.Dropdown(
55
- choices=list(MODELS.keys()),
56
- value="SmolVLM-Instruct",
57
- label="Select Model",
58
- interactive=True
59
- )
60
-
61
- chat_interface = gr.ChatInterface(
62
- fn=safe_chat_fn,
63
- additional_inputs=[client],
64
- multimodal=True
65
  )
66
-
 
 
67
  # Update client when model changes
68
- model_dropdown.change(
69
- fn=set_client_for_session,
70
- inputs=[model_dropdown],
71
- outputs=[client]
72
- )
73
-
74
- # Initialize client on page load
75
- demo.load(
76
- fn=set_client_for_session,
77
- inputs=[gr.State("SmolVLM-Instruct")],
78
- outputs=[client]
79
- )
80
 
81
- demo = demo
 
82
 
 
 
 
 
1
  import gradio as gr
2
+ from gradio_client import Client, handle_file
3
 
4
+ MODELS = {"SmolVLM-Instruct": "akhaliq/SmolVLM-Instruct"}
5
 
 
 
 
6
 
7
  def create_chat_fn(client):
8
  def chat(message, history):
9
  # Extract text and files from the message
10
  text = message.get("text", "")
11
  files = message.get("files", [])
12
+
13
  # Handle file uploads if present
14
  processed_files = [handle_file(f) for f in files]
15
+
16
  response = client.predict(
17
  message={"text": text, "files": processed_files},
18
  system_prompt="You are a helpful AI assistant.",
 
21
  top_k=40,
22
  repetition_penalty=1.1,
23
  top_p=0.95,
24
+ api_name="/chat",
25
  )
26
  return response
27
+
28
  return chat
29
 
30
+
31
  def set_client_for_session(model_name, request: gr.Request):
32
  headers = {}
33
+ if request and hasattr(request, "headers"):
34
+ x_ip_token = request.headers.get("x-ip-token")
35
  if x_ip_token:
36
  headers["X-IP-Token"] = x_ip_token
37
+
38
  return Client(MODELS[model_name], headers=headers)
39
 
40
+
41
  def safe_chat_fn(message, history, client):
42
  if client is None:
43
  return "Error: Client not initialized. Please refresh the page."
 
47
  print(f"Error during chat: {str(e)}")
48
  return f"Error during chat: {str(e)}"
49
 
50
+
51
  with gr.Blocks() as demo:
52
+
53
  client = gr.State()
54
+
55
  model_dropdown = gr.Dropdown(
56
+ choices=list(MODELS.keys()), value="SmolVLM-Instruct", label="Select Model", interactive=True
 
 
 
 
 
 
 
 
 
57
  )
58
+
59
+ chat_interface = gr.ChatInterface(fn=safe_chat_fn, additional_inputs=[client], multimodal=True)
60
+
61
  # Update client when model changes
62
+ model_dropdown.change(fn=set_client_for_session, inputs=[model_dropdown], outputs=[client])
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ # Initialize client on page load
65
+ demo.load(fn=set_client_for_session, inputs=[gr.State("SmolVLM-Instruct")], outputs=[client])
66
 
67
+ if __name__ == "__main__":
68
+ demo.launch()
app_lumaai.py CHANGED
@@ -2,6 +2,6 @@ import gradio as gr
2
  import lumaai_gradio
3
 
4
  demo = gr.load(
5
- name='dream-machine',
6
  src=lumaai_gradio.registry,
7
- )
 
2
  import lumaai_gradio
3
 
4
  demo = gr.load(
5
+ name="dream-machine",
6
  src=lumaai_gradio.registry,
7
+ )
app_meta.py CHANGED
@@ -2,4 +2,4 @@ import gradio as gr
2
 
3
  demo = gr.load("models/meta-llama/Llama-3.3-70B-Instruct")
4
 
5
- demo = demo
 
2
 
3
  demo = gr.load("models/meta-llama/Llama-3.3-70B-Instruct")
4
 
5
+ demo = demo
app_mindsearch.py CHANGED
@@ -4,9 +4,9 @@ import gradio as gr
4
  demo = gr.load(name="internlm/MindSearch", src="spaces")
5
 
6
  # Disable API access for all functions
7
- if hasattr(demo, 'fns'):
8
  for fn in demo.fns.values():
9
  fn.api_name = False
10
 
11
  if __name__ == "__main__":
12
- demo.launch()
 
4
  demo = gr.load(name="internlm/MindSearch", src="spaces")
5
 
6
  # Disable API access for all functions
7
+ if hasattr(demo, "fns"):
8
  for fn in demo.fns.values():
9
  fn.api_name = False
10
 
11
  if __name__ == "__main__":
12
+ demo.launch()
app_paligemma.py CHANGED
@@ -1,17 +1,15 @@
1
- from gradio_client import Client, handle_file
2
  import gradio as gr
3
- import os
 
 
4
 
5
- MODELS = {
6
- "Paligemma-10B": "akhaliq/paligemma2-10b-ft-docci-448"
7
- }
8
 
9
  def create_chat_fn(client, system_prompt, temperature, max_tokens, top_k, rep_penalty, top_p):
10
  def chat(message, history):
11
  text = message.get("text", "")
12
  files = message.get("files", [])
13
  processed_files = [handle_file(f) for f in files]
14
-
15
  response = client.predict(
16
  message={"text": text, "files": processed_files},
17
  system_prompt=system_prompt,
@@ -20,79 +18,61 @@ def create_chat_fn(client, system_prompt, temperature, max_tokens, top_k, rep_pe
20
  top_k=top_k,
21
  repetition_penalty=rep_penalty,
22
  top_p=top_p,
23
- api_name="/chat"
24
  )
25
  return response
 
26
  return chat
27
 
 
28
  def set_client_for_session(model_name, request: gr.Request):
29
  headers = {}
30
- if request and hasattr(request, 'headers'):
31
- x_ip_token = request.headers.get('x-ip-token')
32
  if x_ip_token:
33
  headers["X-IP-Token"] = x_ip_token
34
-
35
  return Client(MODELS[model_name], headers=headers)
36
 
37
- def safe_chat_fn(message, history, client, system_prompt, temperature,
38
- max_tokens, top_k, rep_penalty, top_p):
39
  if client is None:
40
  return "Error: Client not initialized. Please refresh the page."
41
  try:
42
- return create_chat_fn(client, system_prompt, temperature,
43
- max_tokens, top_k, rep_penalty, top_p)(message, history)
 
44
  except Exception as e:
45
  print(f"Error during chat: {str(e)}")
46
  return f"Error during chat: {str(e)}"
47
 
 
48
  with gr.Blocks() as demo:
49
  client = gr.State()
50
-
51
  with gr.Accordion("Advanced Settings", open=False):
52
- system_prompt = gr.Textbox(
53
- value="You are a helpful AI assistant.",
54
- label="System Prompt"
55
- )
56
  with gr.Row():
57
- temperature = gr.Slider(
58
- minimum=0.0, maximum=2.0, value=0.7,
59
- label="Temperature"
60
- )
61
- top_p = gr.Slider(
62
- minimum=0.0, maximum=1.0, value=0.95,
63
- label="Top P"
64
- )
65
  with gr.Row():
66
- top_k = gr.Slider(
67
- minimum=1, maximum=100, value=40, step=1,
68
- label="Top K"
69
- )
70
- rep_penalty = gr.Slider(
71
- minimum=1.0, maximum=2.0, value=1.1,
72
- label="Repetition Penalty"
73
- )
74
- max_tokens = gr.Slider(
75
- minimum=64, maximum=4096, value=1024, step=64,
76
- label="Max Tokens"
77
- )
78
-
79
  chat_interface = gr.ChatInterface(
80
  fn=safe_chat_fn,
81
- additional_inputs=[client, system_prompt, temperature,
82
- max_tokens, top_k, rep_penalty, top_p],
83
- multimodal=True
84
  )
85
-
86
  # Initialize client on page load with default model
87
- demo.load(
88
- fn=set_client_for_session,
89
- inputs=[gr.State("Paligemma-10B")], # Using default model
90
- outputs=[client]
91
- )
92
 
93
  # Move the API access check here, after demo is defined
94
- if hasattr(demo, 'fns'):
95
  for fn in demo.fns.values():
96
  fn.api_name = False
97
 
98
- demo = demo
 
 
 
1
  import gradio as gr
2
+ from gradio_client import Client, handle_file
3
+
4
+ MODELS = {"Paligemma-10B": "akhaliq/paligemma2-10b-ft-docci-448"}
5
 
 
 
 
6
 
7
  def create_chat_fn(client, system_prompt, temperature, max_tokens, top_k, rep_penalty, top_p):
8
  def chat(message, history):
9
  text = message.get("text", "")
10
  files = message.get("files", [])
11
  processed_files = [handle_file(f) for f in files]
12
+
13
  response = client.predict(
14
  message={"text": text, "files": processed_files},
15
  system_prompt=system_prompt,
 
18
  top_k=top_k,
19
  repetition_penalty=rep_penalty,
20
  top_p=top_p,
21
+ api_name="/chat",
22
  )
23
  return response
24
+
25
  return chat
26
 
27
+
28
  def set_client_for_session(model_name, request: gr.Request):
29
  headers = {}
30
+ if request and hasattr(request, "headers"):
31
+ x_ip_token = request.headers.get("x-ip-token")
32
  if x_ip_token:
33
  headers["X-IP-Token"] = x_ip_token
34
+
35
  return Client(MODELS[model_name], headers=headers)
36
 
37
+
38
+ def safe_chat_fn(message, history, client, system_prompt, temperature, max_tokens, top_k, rep_penalty, top_p):
39
  if client is None:
40
  return "Error: Client not initialized. Please refresh the page."
41
  try:
42
+ return create_chat_fn(client, system_prompt, temperature, max_tokens, top_k, rep_penalty, top_p)(
43
+ message, history
44
+ )
45
  except Exception as e:
46
  print(f"Error during chat: {str(e)}")
47
  return f"Error during chat: {str(e)}"
48
 
49
+
50
  with gr.Blocks() as demo:
51
  client = gr.State()
52
+
53
  with gr.Accordion("Advanced Settings", open=False):
54
+ system_prompt = gr.Textbox(value="You are a helpful AI assistant.", label="System Prompt")
 
 
 
55
  with gr.Row():
56
+ temperature = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, label="Temperature")
57
+ top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, label="Top P")
 
 
 
 
 
 
58
  with gr.Row():
59
+ top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top K")
60
+ rep_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, label="Repetition Penalty")
61
+ max_tokens = gr.Slider(minimum=64, maximum=4096, value=1024, step=64, label="Max Tokens")
62
+
 
 
 
 
 
 
 
 
 
63
  chat_interface = gr.ChatInterface(
64
  fn=safe_chat_fn,
65
+ additional_inputs=[client, system_prompt, temperature, max_tokens, top_k, rep_penalty, top_p],
66
+ multimodal=True,
 
67
  )
68
+
69
  # Initialize client on page load with default model
70
+ demo.load(fn=set_client_for_session, inputs=[gr.State("Paligemma-10B")], outputs=[client]) # Using default model
 
 
 
 
71
 
72
  # Move the API access check here, after demo is defined
73
+ if hasattr(demo, "fns"):
74
  for fn in demo.fns.values():
75
  fn.api_name = False
76
 
77
+ if __name__ == "__main__":
78
+ demo.launch()
app_playai.py CHANGED
@@ -1,10 +1,10 @@
1
  import gradio as gr
2
  import playai_gradio
3
 
4
- demo =gr.load(
5
- name='PlayDialog',
6
  src=playai_gradio.registry,
7
  )
8
 
9
  for fn in demo.fns.values():
10
- fn.api_name = False
 
1
  import gradio as gr
2
  import playai_gradio
3
 
4
+ demo = gr.load(
5
+ name="PlayDialog",
6
  src=playai_gradio.registry,
7
  )
8
 
9
  for fn in demo.fns.values():
10
+ fn.api_name = False
app_showui.py CHANGED
@@ -5,6 +5,6 @@ demo = gr.load(name="showlab/ShowUI", src="spaces")
5
 
6
 
7
  # Disable API access for all functions
8
- if hasattr(demo, 'fns'):
9
  for fn in demo.fns.values():
10
  fn.api_name = False
 
5
 
6
 
7
  # Disable API access for all functions
8
+ if hasattr(demo, "fns"):
9
  for fn in demo.fns.values():
10
  fn.api_name = False
app_trellis.py CHANGED
@@ -7,4 +7,4 @@ demo = gr.load(name="JeffreyXiang/TRELLIS", src="spaces")
7
  # Disable API access for all functions
8
  if hasattr(demo, "fns"):
9
  for fn in demo.fns.values():
10
- fn.api_name = False
 
7
  # Disable API access for all functions
8
  if hasattr(demo, "fns"):
9
  for fn in demo.fns.values():
10
+ fn.api_name = False
utils.py CHANGED
@@ -1,4 +1,4 @@
1
- from typing import Callable, Literal, Dict, Union
2
 
3
  import gradio as gr
4
 
 
1
+ from typing import Callable, Dict, Literal, Union
2
 
3
  import gradio as gr
4