natolambert
commited on
Commit
·
06fd8bd
1
Parent(s):
faa2dab
updates
Browse files- app.py +43 -35
- src/utils.py +17 -13
app.py
CHANGED
@@ -130,7 +130,7 @@ def random_sample(r: gr.Request, subset):
|
|
130 |
|
131 |
subsets = eval_set.unique("subset")
|
132 |
|
133 |
-
def regex_table(dataframe, regex):
|
134 |
"""
|
135 |
Takes a model name as a regex, then returns only the rows that has that in it.
|
136 |
"""
|
@@ -138,6 +138,9 @@ def regex_table(dataframe, regex):
|
|
138 |
regex_list = [x.strip() for x in regex.split(",")]
|
139 |
# Join the list into a single regex pattern with '|' acting as OR
|
140 |
combined_regex = '|'.join(regex_list)
|
|
|
|
|
|
|
141 |
# Filter the dataframe such that 'model' contains any of the regex patterns
|
142 |
return dataframe[dataframe["model"].str.contains(combined_regex, case=False, na=False)]
|
143 |
|
@@ -145,50 +148,47 @@ def regex_table(dataframe, regex):
|
|
145 |
with gr.Blocks() as app:
|
146 |
# create tabs for the app, moving the current table to one titled "HERM" and the benchmark_text to a tab called "About"
|
147 |
with gr.Row():
|
148 |
-
gr.
|
149 |
-
|
|
|
|
|
|
|
150 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
151 |
with gr.TabItem("HERM Eval Set - Overview"):
|
152 |
with gr.Row():
|
153 |
-
|
|
|
154 |
herm_data_avg.values,
|
155 |
datatype=col_types_herm_avg,
|
156 |
headers=herm_data_avg.columns.tolist(),
|
157 |
-
|
158 |
-
height=1000,
|
159 |
)
|
160 |
-
|
161 |
-
|
162 |
-
herm_data_avg.values,
|
163 |
datatype=col_types_herm_avg,
|
164 |
headers=herm_data_avg.columns.tolist(),
|
165 |
-
|
|
|
166 |
)
|
|
|
167 |
with gr.TabItem("HERM Eval Set - Detailed"):
|
168 |
with gr.Row():
|
169 |
-
|
|
|
170 |
herm_data.values,
|
171 |
datatype=col_types_herm,
|
172 |
headers=herm_data.columns.tolist(),
|
173 |
-
|
174 |
-
height=1000,
|
175 |
)
|
176 |
-
|
177 |
-
|
178 |
-
herm_data.values,
|
179 |
datatype=col_types_herm,
|
180 |
headers=herm_data.columns.tolist(),
|
181 |
-
|
|
|
182 |
)
|
183 |
with gr.TabItem("HERM Eval Set - Length Bias"):
|
184 |
with gr.Row():
|
185 |
-
herm_table_len = gr.Dataframe(
|
186 |
-
herm_data_length.values,
|
187 |
-
datatype=cols_herm_data_length,
|
188 |
-
headers=herm_data_length.columns.tolist(),
|
189 |
-
elem_id="herm_dataframe_length",
|
190 |
-
height=1000,
|
191 |
-
)
|
192 |
# backup
|
193 |
herm_table_len_hidden = gr.Dataframe(
|
194 |
herm_data_length.values,
|
@@ -196,6 +196,13 @@ with gr.Blocks() as app:
|
|
196 |
headers=herm_data_length.columns.tolist(),
|
197 |
visible=False,
|
198 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
with gr.TabItem("Known Pref. Sets"):
|
200 |
with gr.Row():
|
201 |
PREF_SET_TEXT = """
|
@@ -203,13 +210,6 @@ with gr.Blocks() as app:
|
|
203 |
"""
|
204 |
gr.Markdown(PREF_SET_TEXT)
|
205 |
with gr.Row():
|
206 |
-
pref_sets_table = gr.Dataframe(
|
207 |
-
prefs_data.values,
|
208 |
-
datatype=col_types_prefs,
|
209 |
-
headers=prefs_data.columns.tolist(),
|
210 |
-
elem_id="prefs_dataframe",
|
211 |
-
height=1000,
|
212 |
-
)
|
213 |
# backup
|
214 |
pref_sets_table_hidden = gr.Dataframe(
|
215 |
prefs_data.values,
|
@@ -217,6 +217,14 @@ with gr.Blocks() as app:
|
|
217 |
headers=prefs_data.columns.tolist(),
|
218 |
visible=False,
|
219 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
with gr.TabItem("About"):
|
222 |
with gr.Row():
|
@@ -239,10 +247,10 @@ with gr.Blocks() as app:
|
|
239 |
# plot = plot_avg_correlation(herm_data_avg, prefs_data)
|
240 |
# gr.Plot(plot)
|
241 |
|
242 |
-
search.change(regex_table, inputs=[herm_table_hidden, search], outputs=herm_table)
|
243 |
-
search.change(regex_table, inputs=[herm_table_detailed_hidden, search], outputs=herm_table_detailed)
|
244 |
-
search.change(regex_table, inputs=[herm_table_len_hidden, search], outputs=herm_table_len)
|
245 |
-
search.change(regex_table, inputs=[pref_sets_table_hidden, search], outputs=pref_sets_table)
|
246 |
|
247 |
# Load data when app starts, TODO make this used somewhere...
|
248 |
# def load_data_on_start():
|
|
|
130 |
|
131 |
subsets = eval_set.unique("subset")
|
132 |
|
133 |
+
def regex_table(dataframe, regex, filter_button):
|
134 |
"""
|
135 |
Takes a model name as a regex, then returns only the rows that has that in it.
|
136 |
"""
|
|
|
138 |
regex_list = [x.strip() for x in regex.split(",")]
|
139 |
# Join the list into a single regex pattern with '|' acting as OR
|
140 |
combined_regex = '|'.join(regex_list)
|
141 |
+
# if filter_button, remove all rows with "ai2" in the model name
|
142 |
+
if (not filter_button) and ("ai2" not in regex):
|
143 |
+
dataframe = dataframe[~dataframe["model"].str.contains("ai2", case=False, na=False)]
|
144 |
# Filter the dataframe such that 'model' contains any of the regex patterns
|
145 |
return dataframe[dataframe["model"].str.contains(combined_regex, case=False, na=False)]
|
146 |
|
|
|
148 |
with gr.Blocks() as app:
|
149 |
# create tabs for the app, moving the current table to one titled "HERM" and the benchmark_text to a tab called "About"
|
150 |
with gr.Row():
|
151 |
+
with gr.Column(scale=3):
|
152 |
+
gr.Markdown(TOP_TEXT)
|
153 |
+
with gr.Column(scale=2):
|
154 |
+
search = gr.Textbox(label="Model Search (delimit with , )", placeholder="Regex search for a model")
|
155 |
+
filter_button = gr.Checkbox(label="Include AI2 training runs (or type ai2 above).", interactive=True)
|
156 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
157 |
with gr.TabItem("HERM Eval Set - Overview"):
|
158 |
with gr.Row():
|
159 |
+
# reference data
|
160 |
+
herm_table_hidden = gr.Dataframe(
|
161 |
herm_data_avg.values,
|
162 |
datatype=col_types_herm_avg,
|
163 |
headers=herm_data_avg.columns.tolist(),
|
164 |
+
visible=False,
|
|
|
165 |
)
|
166 |
+
herm_table = gr.Dataframe(
|
167 |
+
regex_table(herm_data_avg.copy(), "", False).values,
|
|
|
168 |
datatype=col_types_herm_avg,
|
169 |
headers=herm_data_avg.columns.tolist(),
|
170 |
+
elem_id="herm_dataframe_avg",
|
171 |
+
height=1000,
|
172 |
)
|
173 |
+
|
174 |
with gr.TabItem("HERM Eval Set - Detailed"):
|
175 |
with gr.Row():
|
176 |
+
# ref data
|
177 |
+
herm_table_detailed_hidden = gr.Dataframe(
|
178 |
herm_data.values,
|
179 |
datatype=col_types_herm,
|
180 |
headers=herm_data.columns.tolist(),
|
181 |
+
visible=False,
|
|
|
182 |
)
|
183 |
+
herm_table_detailed = gr.Dataframe(
|
184 |
+
regex_table(herm_data.copy(), "", False).values,
|
|
|
185 |
datatype=col_types_herm,
|
186 |
headers=herm_data.columns.tolist(),
|
187 |
+
elem_id="herm_dataframe",
|
188 |
+
height=1000,
|
189 |
)
|
190 |
with gr.TabItem("HERM Eval Set - Length Bias"):
|
191 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
# backup
|
193 |
herm_table_len_hidden = gr.Dataframe(
|
194 |
herm_data_length.values,
|
|
|
196 |
headers=herm_data_length.columns.tolist(),
|
197 |
visible=False,
|
198 |
)
|
199 |
+
herm_table_len = gr.Dataframe(
|
200 |
+
regex_table(herm_data_length.copy(), "", False).values,
|
201 |
+
datatype=cols_herm_data_length,
|
202 |
+
headers=herm_data_length.columns.tolist(),
|
203 |
+
elem_id="herm_dataframe_length",
|
204 |
+
height=1000,
|
205 |
+
)
|
206 |
with gr.TabItem("Known Pref. Sets"):
|
207 |
with gr.Row():
|
208 |
PREF_SET_TEXT = """
|
|
|
210 |
"""
|
211 |
gr.Markdown(PREF_SET_TEXT)
|
212 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
# backup
|
214 |
pref_sets_table_hidden = gr.Dataframe(
|
215 |
prefs_data.values,
|
|
|
217 |
headers=prefs_data.columns.tolist(),
|
218 |
visible=False,
|
219 |
)
|
220 |
+
pref_sets_table = gr.Dataframe(
|
221 |
+
regex_table(prefs_data.copy(), "", False).values,
|
222 |
+
datatype=col_types_prefs,
|
223 |
+
headers=prefs_data.columns.tolist(),
|
224 |
+
elem_id="prefs_dataframe",
|
225 |
+
height=1000,
|
226 |
+
)
|
227 |
+
|
228 |
|
229 |
with gr.TabItem("About"):
|
230 |
with gr.Row():
|
|
|
247 |
# plot = plot_avg_correlation(herm_data_avg, prefs_data)
|
248 |
# gr.Plot(plot)
|
249 |
|
250 |
+
search.change(regex_table, inputs=[herm_table_hidden, search, filter_button], outputs=herm_table)
|
251 |
+
search.change(regex_table, inputs=[herm_table_detailed_hidden, search, filter_button], outputs=herm_table_detailed)
|
252 |
+
search.change(regex_table, inputs=[herm_table_len_hidden, search, filter_button], outputs=herm_table_len)
|
253 |
+
search.change(regex_table, inputs=[pref_sets_table_hidden, search, filter_button], outputs=pref_sets_table)
|
254 |
|
255 |
# Load data when app starts, TODO make this used somewhere...
|
256 |
# def load_data_on_start():
|
src/utils.py
CHANGED
@@ -72,6 +72,23 @@ def load_all_data(data_repo, subdir:str, subsubsets=False): # use HF api to p
|
|
72 |
cols.remove("model_beaker")
|
73 |
df = df.drop(columns=["model_beaker"])
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# round
|
76 |
df[cols] = df[cols].round(2)
|
77 |
avg = np.nanmean(df[cols].values,axis=1).round(2)
|
@@ -92,17 +109,4 @@ def load_all_data(data_repo, subdir:str, subsubsets=False): # use HF api to p
|
|
92 |
cols.insert(1, cols.pop(cols.index('model_type')))
|
93 |
df = df.loc[:, cols]
|
94 |
|
95 |
-
# remove column xstest (outdated data)
|
96 |
-
# if xstest is a column
|
97 |
-
if "xstest" in df.columns:
|
98 |
-
df = df.drop(columns=["xstest"])
|
99 |
-
|
100 |
-
if "ref_model" in df.columns:
|
101 |
-
df = df.drop(columns=["ref_model"])
|
102 |
-
|
103 |
-
# remove column anthropic and summarize_prompted (outdated data)
|
104 |
-
if "anthropic" in df.columns:
|
105 |
-
df = df.drop(columns=["anthropic"])
|
106 |
-
if "summarize_prompted" in df.columns:
|
107 |
-
df = df.drop(columns=["summarize_prompted"])
|
108 |
return df
|
|
|
72 |
cols.remove("model_beaker")
|
73 |
df = df.drop(columns=["model_beaker"])
|
74 |
|
75 |
+
# remove column xstest (outdated data)
|
76 |
+
# if xstest is a column
|
77 |
+
if "xstest" in cols:
|
78 |
+
df = df.drop(columns=["xstest"])
|
79 |
+
cols.remove("xstest")
|
80 |
+
|
81 |
+
if "ref_model" in df.columns:
|
82 |
+
df = df.drop(columns=["ref_model"])
|
83 |
+
|
84 |
+
# remove column anthropic and summarize_prompted (outdated data)
|
85 |
+
if "anthropic" in cols:
|
86 |
+
df = df.drop(columns=["anthropic"])
|
87 |
+
cols.remove("anthropic")
|
88 |
+
if "summarize_prompted" in cols:
|
89 |
+
df = df.drop(columns=["summarize_prompted"])
|
90 |
+
cols.remove("summarize_prompted")
|
91 |
+
|
92 |
# round
|
93 |
df[cols] = df[cols].round(2)
|
94 |
avg = np.nanmean(df[cols].values,axis=1).round(2)
|
|
|
109 |
cols.insert(1, cols.pop(cols.index('model_type')))
|
110 |
df = df.loc[:, cols]
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
return df
|