julien-c HF staff commited on
Commit
49e981f
·
1 Parent(s): 294261e

import from moon-landing codebase

Browse files
Files changed (1) hide show
  1. README.md +81 -23
README.md CHANGED
@@ -3,31 +3,89 @@ title: README
3
  emoji: 🐠
4
  colorFrom: pink
5
  colorTo: purple
6
- sdk: gradio
7
- app_file: app.py
8
  pinned: false
9
  ---
10
 
11
- # Configuration
 
 
 
 
 
12
 
13
- `title`: _string_
14
- Display title for the Space
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- `emoji`: _string_
17
- Space emoji (emoji-only character allowed)
18
-
19
- `colorFrom`: _string_
20
- Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
21
-
22
- `colorTo`: _string_
23
- Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
24
-
25
- `sdk`: _string_
26
- Can be either `gradio` or `streamlit`
27
-
28
- `app_file`: _string_
29
- Path to your main application file (which contains either `gradio` or `streamlit` Python code).
30
- Path is relative to the root of the repository.
31
-
32
- `pinned`: _boolean_
33
- Whether the Space stays on top of your list.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  emoji: 🐠
4
  colorFrom: pink
5
  colorTo: purple
6
+ sdk: static
 
7
  pinned: false
8
  ---
9
 
10
+ <p class="lg:col-span-3">
11
+ Hugging Face is working with Amazon Web Services to make it easier than
12
+ ever for startups and enterprises to <strong
13
+ >train and deploy Hugging Face models in Amazon SageMaker</strong
14
+ >.
15
+ </p>
16
 
17
+ <a
18
+ href="https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face"
19
+ class="block overflow-hidden group"
20
+ >
21
+ <div
22
+ class="w-full h-40 object-cover mb-2 bg-indigo-100 rounded-lg flex items-center justify-center dark:bg-gray-900 dark:group-hover:bg-gray-850"
23
+ >
24
+ <img
25
+ alt=""
26
+ src="/front/assets/promo/amazon_sagemaker_x_huggingface.png"
27
+ class="w-40"
28
+ />
29
+ </div>
30
+ <div class="underline">Read announcement blog post</div>
31
+ </a>
32
+ <a href="https://youtu.be/ok3hetb42gU" class="block overflow-hidden">
33
+ <img
34
+ alt=""
35
+ src="/front/assets/promo/amazon_walkthrough_thumbnail.png"
36
+ class="w-full h-40 object-cover mb-2 bg-gray-300 rounded-lg"
37
+ />
38
+ <div class="underline">Video Walkthrough with Philipp Schmid</div>
39
+ </a>
40
+ <a
41
+ href="https://huggingface.co/docs/sagemaker"
42
+ class="block overflow-hidden group"
43
+ >
44
+ <div
45
+ class="w-full h-40 object-cover mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start"
46
+ >
47
+ <img
48
+ alt=""
49
+ src="/front/assets/promo/amazon_documentation.png"
50
+ class="w-44 p-4"
51
+ />
52
+ </div>
53
+ <div class="underline">Documentation: Hugging Face in SageMaker</div>
54
+ </a>
55
 
56
+ <div class="lg:col-span-3">
57
+ <p class="mb-2">
58
+ To train Hugging Face models in Amazon SageMaker, you can use the
59
+ Hugging Face Deep Learning Contrainers (DLCs) and the Hugging Face
60
+ support in the SageMaker Python SDK.
61
+ </p>
62
+ <p class="mb-2">
63
+ The DLCs are fully integrated with the SageMaker distributed training
64
+ libraries to train models more quickly using the latest generation of
65
+ accelerated computing instances available on Amazon EC2. With the
66
+ SageMaker Python SDK, you can start training with just a single line of
67
+ code, enabling your teams to move from idea to production more quickly.
68
+ </p>
69
+ <p class="mb-2">
70
+ To deploy Hugging Face models in Amazon SageMaker, you can use the
71
+ Hugging Face Deep Learning Containers with the new Hugging Face
72
+ Inference Toolkit.
73
+ </p>
74
+ <p class="mb-2">
75
+ With the new Hugging Face Inference DLCs, deploy your trained models for
76
+ inference with just one more line of code, or select any of the 10,000+
77
+ models publicly available on the 🤗 Hub, and deploy them with Amazon
78
+ SageMaker, to easily create production-ready endpoints that scale
79
+ seamlessly, with built-in monitoring and enterprise-level security.
80
+ </p>
81
+ <p>
82
+ More information: <a
83
+ href="https://aws.amazon.com/blogs/machine-learning/aws-and-hugging-face-collaborate-to-simplify-and-accelerate-adoption-of-natural-language-processing-models/"
84
+ class="underline">AWS blog post</a
85
+ >,
86
+ <a
87
+ href="https://discuss.huggingface.co/c/sagemaker/17"
88
+ class="underline">Community Forum</a
89
+ >
90
+ </p>
91
+ </div>