taewon99 commited on
Commit
877d3da
·
1 Parent(s): 2894253

Upload 7 files

Browse files
Files changed (7) hide show
  1. README.md +5 -5
  2. app.py +122 -0
  3. bezos.jpeg +0 -0
  4. biden.jpeg +0 -0
  5. elon.jpg +0 -0
  6. requirements.txt +6 -0
  7. zuckerberg.jpeg +0 -0
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
- title: Face Segmentation
3
- emoji: 🏃
4
- colorFrom: yellow
5
- colorTo: pink
6
  sdk: gradio
7
- sdk_version: 4.1.1
8
  app_file: app.py
9
  pinned: false
10
  ---
 
1
  ---
2
+ title: Segmentation
3
+ emoji: 👀
4
+ colorFrom: red
5
+ colorTo: blue
6
  sdk: gradio
7
+ sdk_version: 3.44.4
8
  app_file: app.py
9
  pinned: false
10
  ---
app.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from matplotlib import gridspec
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ from PIL import Image
7
+ import tensorflow as tf
8
+ from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
+
10
+ feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
+ "jonathandinu/face-parsing"
12
+ )
13
+ model = TFSegformerForSemanticSegmentation.from_pretrained("jonathandinu/face-parsing")
14
+
15
+
16
+ def ade_palette():
17
+ """ADE20K palette that maps each class to RGB values."""
18
+ return [
19
+ [125, 237, 123],
20
+ [25, 97, 48],
21
+ [59, 11, 81],
22
+ [163, 123, 42],
23
+ [239, 41, 136],
24
+ [224, 4, 115],
25
+ [114, 84, 169],
26
+ [16, 137, 208],
27
+ [153, 91, 30],
28
+ [48, 90, 221],
29
+ [91, 245, 206],
30
+ [108, 87, 175],
31
+ [232, 181, 231],
32
+ [153, 70, 176],
33
+ [32, 25, 179],
34
+ [118, 177, 239],
35
+ [246, 75, 15],
36
+ [183, 17, 190],
37
+ [79, 235, 51],
38
+ ]
39
+
40
+
41
+ labels_list = []
42
+
43
+ with open(r"labels.txt", "r") as fp:
44
+ for line in fp:
45
+ labels_list.append(line[:-1])
46
+
47
+ colormap = np.asarray(ade_palette())
48
+
49
+
50
+ def label_to_color_image(label):
51
+ if label.ndim != 2:
52
+ raise ValueError("Expect 2-D input label")
53
+
54
+ if np.max(label) >= len(colormap):
55
+ raise ValueError("label value too large.")
56
+ return colormap[label]
57
+
58
+
59
+ def draw_plot(pred_img, seg):
60
+ fig = plt.figure(figsize=(20, 15))
61
+
62
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
63
+
64
+ plt.subplot(grid_spec[0])
65
+ plt.imshow(pred_img)
66
+ plt.axis("off")
67
+ LABEL_NAMES = np.asarray(labels_list)
68
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
69
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
70
+
71
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
72
+ ax = plt.subplot(grid_spec[1])
73
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
74
+ ax.yaxis.tick_right()
75
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
76
+ plt.xticks([], [])
77
+ ax.tick_params(width=0.0, labelsize=25)
78
+ return fig
79
+
80
+
81
+ def sepia(input_img):
82
+ input_img = Image.fromarray(input_img)
83
+
84
+ inputs = feature_extractor(images=input_img, return_tensors="tf")
85
+ outputs = model(**inputs)
86
+ logits = outputs.logits
87
+
88
+ logits = tf.transpose(logits, [0, 2, 3, 1])
89
+ logits = tf.image.resize(
90
+ logits, input_img.size[::-1]
91
+ ) # We reverse the shape of `image` because `image.size` returns width and height.
92
+ seg = tf.math.argmax(logits, axis=-1)[0]
93
+
94
+ color_seg = np.zeros(
95
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
96
+ ) # height, width, 3
97
+ for label, color in enumerate(colormap):
98
+ color_seg[seg.numpy() == label, :] = color
99
+
100
+ # Show image + mask
101
+ pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
102
+ pred_img = pred_img.astype(np.uint8)
103
+
104
+ fig = draw_plot(pred_img, seg)
105
+ return fig
106
+
107
+
108
+ demo = gr.Interface(
109
+ fn=sepia,
110
+ inputs=gr.Image(shape=(400, 600)),
111
+ outputs=["plot"],
112
+ examples=[
113
+ "elon.jpg",
114
+ "biden.jpeg",
115
+ "bezos.jpeg",
116
+ "zuckerberg.jpeg",
117
+ ],
118
+ allow_flagging="never",
119
+ )
120
+
121
+
122
+ demo.launch()
bezos.jpeg ADDED
biden.jpeg ADDED
elon.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ tensorflow
4
+ numpy
5
+ Image
6
+ matplotlib
zuckerberg.jpeg ADDED