glucosedao_gpu / tools.py
antonkulaga's picture
update space
73cfaa5
import sys
import os
import pickle
import gzip
from pathlib import Path
import numpy as np
import torch
from scipy import stats
from gluformer.model import Gluformer
from utils.darts_processing import *
from utils.darts_dataset import *
import hashlib
from urllib.parse import urlparse
from huggingface_hub import hf_hub_download
import plotly.graph_objects as go
import gradio as gr
from format_dexcom import *
from typing import Tuple, Union, List
from plotly.graph_objs._figure import Figure
from gradio.components import Slider
from gradio.components import Markdown
glucose = Path(os.path.abspath(__file__)).parent.resolve()
file_directory = glucose / "files"
def plot_forecast(forecasts: np.ndarray, filename: str,ind:int=10) -> Tuple[Path, Figure]:
forecasts = (forecasts - scalers['target'].min_) / scalers['target'].scale_
trues = [dataset_test_glufo.evalsample(i) for i in range(len(dataset_test_glufo))]
trues = scalers['target'].inverse_transform(trues)
trues = [ts.values() for ts in trues] # Convert TimeSeries to numpy arrays
trues = np.array(trues)
inputs = [dataset_test_glufo[i][0] for i in range(len(dataset_test_glufo))]
inputs = (np.array(inputs) - scalers['target'].min_) / scalers['target'].scale_
# Select a specific sample to plot
samples = np.random.normal(
loc=forecasts[ind, :], # Mean (center) of the distribution
scale=0.1, # Standard deviation (spread) of the distribution
size=(forecasts.shape[1], forecasts.shape[2])
)
# Create figure
fig = go.Figure()
# Plot predictive distribution
for point in range(samples.shape[0]):
kde = stats.gaussian_kde(samples[point,:])
maxi, mini = 1.2 * np.max(samples[point, :]), 0.8 * np.min(samples[point, :])
y_grid = np.linspace(mini, maxi, 200)
x = kde(y_grid)
# Create gradient color
color = f'rgba(53, 138, 217, {(point + 1) / samples.shape[0]})'
# Add filled area
fig.add_trace(go.Scatter(
x=np.concatenate([np.full_like(y_grid, point), np.full_like(y_grid, point - x * 15)[::-1]]),
y=np.concatenate([y_grid, y_grid[::-1]]),
fill='tonexty',
fillcolor=color,
line=dict(color='rgba(0,0,0,0)'),
showlegend=False
))
true_values = np.concatenate([inputs[ind, -12:], trues[ind, :]])
true_values_flat=true_values.flatten()
fig.add_trace(go.Scatter(
x=list(range(-12, 12)),
y=true_values_flat.tolist(), # Convert to list explicitly
mode='lines+markers',
line=dict(color='blue', width=2),
marker=dict(size=6),
name='True Values'
))
# Plot median
forecast = samples[:, :]
median = np.quantile(forecast, 0.5, axis=-1)
fig.add_trace(go.Scatter(
x=list(range(12)),
y=median.tolist(), # Convert to list explicitly
mode='lines+markers',
line=dict(color='red', width=2),
marker=dict(size=8),
name='Median Forecast'
))
# Update layout
fig.update_layout(
title='Gluformer Prediction with Gradient for dataset',
xaxis_title='Time (in 5 minute intervals)',
yaxis_title='Glucose (mg/dL)',
font=dict(size=14),
showlegend=True,
width=1000,
height=600
)
# Save figure
where = file_directory / filename
fig.write_html(str(where.with_suffix('.html')))
fig.write_image(str(where))
return where, fig
def generate_filename_from_url(url: str, extension: str = "png") -> str:
"""
:param url:
:param extension:
:return:
"""
# Extract the last segment of the URL
last_segment = urlparse(url).path.split('/')[-1]
# Compute the hash of the URL
url_hash = hashlib.md5(url.encode('utf-8')).hexdigest()
# Create the filename
filename = f"{last_segment.replace('.','_')}_{url_hash}.{extension}"
return filename
glufo = None
scalers = None
dataset_test_glufo = None
filename = None
def prep_predict_glucose_tool(file: Union[str, Path], model_name: str = "gluformer_1samples_10000epochs_10heads_32batch_geluactivation_livia_mini_weights.pth") -> Tuple[Slider, Markdown]:
"""
Function to predict future glucose of user.
"""
global formatter, series, scalers, glufo, dataset_test_glufo, filename
model = "Livia-Zaharia/gluformer_models"
model_path = hf_hub_download(repo_id=model, filename=model_name)
formatter, series, scalers = load_data(
url=str(file),
config_path=file_directory / "config.yaml",
use_covs=True,
cov_type='dual',
use_static_covs=True
)
formatter.params['gluformer'] = {
'in_len': 96, # example input length, adjust as necessary
'd_model': 512, # model dimension
'n_heads': 10, # number of attention heads########################
'd_fcn': 1024, # fully connected layer dimension
'num_enc_layers': 2, # number of encoder layers
'num_dec_layers': 2, # number of decoder layers
'length_pred': 12 # prediction length, adjust as necessary represents 1 h
}
num_dynamic_features = series['train']['future'][-1].n_components
num_static_features = series['train']['static'][-1].n_components
global glufo
glufo = Gluformer(
d_model=formatter.params['gluformer']['d_model'],
n_heads=formatter.params['gluformer']['n_heads'],
d_fcn=formatter.params['gluformer']['d_fcn'],
r_drop=0.2,
activ='gelu',
num_enc_layers=formatter.params['gluformer']['num_enc_layers'],
num_dec_layers=formatter.params['gluformer']['num_dec_layers'],
distil=True,
len_seq=formatter.params['gluformer']['in_len'],
label_len=formatter.params['gluformer']['in_len'] // 3,
len_pred=formatter.params['length_pred'],
num_dynamic_features=num_dynamic_features,
num_static_features=num_static_features
)
device = "cuda" if torch.cuda.is_available() else "cpu"
glufo.load_state_dict(torch.load(str(model_path), map_location=torch.device(device)))
global dataset_test_glufo
dataset_test_glufo = SamplingDatasetInferenceDual(
target_series=series['test']['target'],
covariates=series['test']['future'],
input_chunk_length=formatter.params['gluformer']['in_len'],
output_chunk_length=formatter.params['length_pred'],
use_static_covariates=True,
array_output_only=True
)
global filename
filename = generate_filename_from_url(file)
max_index = len(dataset_test_glufo) - 1
print(f"Total number of test samples: {max_index + 1}")
return (
gr.Slider(
minimum=0,
maximum=max_index-1,
value=max_index,
step=1,
label="Select Sample Index",
visible=True
),
gr.Markdown(f"Total number of test samples: {max_index + 1}", visible=True)
)
def predict_glucose_tool(ind: int) -> Figure:
device = "cuda" if torch.cuda.is_available() else "cpu"
forecasts, _ = glufo.predict(
dataset_test_glufo,
batch_size=16,#######
num_samples=10,
device=device
)
figure_path, result = plot_forecast(forecasts,filename,ind)
return result