Spaces:
Running
Running
init
Browse files- README.md +26 -13
- app.py +78 -0
- requirements.txt +7 -0
README.md
CHANGED
@@ -1,13 +1,26 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# BioClip Image Classification
|
2 |
+
|
3 |
+
This Hugging Face Space demonstrates image classification using the BioClip model. Upload an image to get a prediction of its class, along with the top 3 most similar classes and file paths.
|
4 |
+
|
5 |
+
## How to Use
|
6 |
+
|
7 |
+
1. Open the Gradio interface in this Space.
|
8 |
+
2. Upload an image using the provided input area.
|
9 |
+
3. The model will process the image and return:
|
10 |
+
- The predicted class
|
11 |
+
- The top 3 most similar classes
|
12 |
+
- The top 3 most similar file paths from the dataset
|
13 |
+
|
14 |
+
## About the Model
|
15 |
+
|
16 |
+
This Space uses the BioClip model, which is designed for biological image classification. The model is loaded from the Hugging Face model hub (imageomics/bioclip).
|
17 |
+
|
18 |
+
## Technical Details
|
19 |
+
|
20 |
+
- The Space uses Gradio for the user interface.
|
21 |
+
- It employs FAISS indexes for efficient similarity search.
|
22 |
+
- The classification is performed using a k-nearest neighbors approach with majority voting.
|
23 |
+
|
24 |
+
## Note
|
25 |
+
|
26 |
+
The dataset and FAISS indexes are expected to be present in the `./data/embeddings_bioclip_False` directory. Make sure to include these files when setting up the Space.
|
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import open_clip
|
6 |
+
from datasets import Dataset
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Set environment variable to work around OpenMP runtime issue
|
10 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
11 |
+
|
12 |
+
# Load the model and processor
|
13 |
+
model, processor = open_clip.create_model_from_pretrained('hf-hub:imageomics/bioclip')
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
model.to(device)
|
16 |
+
|
17 |
+
# Load the dataset
|
18 |
+
embedding_path = "./data/embeddings_bioclip_False"
|
19 |
+
ds = Dataset.load_from_disk(embedding_path)
|
20 |
+
|
21 |
+
# Load FAISS indexes
|
22 |
+
cosine_faiss_path = os.path.join(embedding_path, "embeddings_cosine.faiss")
|
23 |
+
l2_faiss_path = os.path.join(embedding_path, "embeddings_l2.faiss")
|
24 |
+
ds.load_faiss_index("embeddings_cosine", cosine_faiss_path)
|
25 |
+
ds.load_faiss_index("embeddings_l2", l2_faiss_path)
|
26 |
+
|
27 |
+
def majority_vote(classes, scores=None):
|
28 |
+
if scores is None:
|
29 |
+
scores = np.ones_like(classes)
|
30 |
+
unique_classes, class_counts = np.unique(classes, return_counts=True)
|
31 |
+
class_weights = {cls: 0 for cls in unique_classes}
|
32 |
+
|
33 |
+
for cls, weight in zip(classes, scores):
|
34 |
+
class_weights[cls] += weight
|
35 |
+
|
36 |
+
majority_class = max(class_weights, key=class_weights.get)
|
37 |
+
return majority_class
|
38 |
+
|
39 |
+
def classify_example(example, index="embeddings_l2", k=10, vote_scores=True):
|
40 |
+
features = np.array(example["embeddings"], dtype=np.float32)
|
41 |
+
scores, nearest = ds.get_nearest_examples(index, features, k)
|
42 |
+
|
43 |
+
class_labels = [ds.features["label"].names[c] for c in nearest["label"]]
|
44 |
+
|
45 |
+
if vote_scores:
|
46 |
+
prediction = majority_vote(class_labels, scores)
|
47 |
+
else:
|
48 |
+
prediction = majority_vote(class_labels)
|
49 |
+
|
50 |
+
return prediction, class_labels, nearest["file"]
|
51 |
+
|
52 |
+
def embed_image(image: Image.Image):
|
53 |
+
processed_images = processor(image).unsqueeze(0)
|
54 |
+
|
55 |
+
with torch.no_grad():
|
56 |
+
embeddings = model.encode_image(processed_images.to(device))
|
57 |
+
|
58 |
+
return {"embeddings": embeddings.cpu()}
|
59 |
+
|
60 |
+
def predict(image):
|
61 |
+
embedding = embed_image(image)
|
62 |
+
prediction, class_labels, file_paths = classify_example(embedding)
|
63 |
+
|
64 |
+
return prediction, ", ".join(class_labels[:3]), ", ".join(file_paths[:3])
|
65 |
+
|
66 |
+
iface = gr.Interface(
|
67 |
+
fn=predict,
|
68 |
+
inputs=gr.Image(type="pil"),
|
69 |
+
outputs=[
|
70 |
+
gr.Textbox(label="Prediction"),
|
71 |
+
gr.Textbox(label="Top 3 Classes"),
|
72 |
+
gr.Textbox(label="Top 3 File Paths")
|
73 |
+
],
|
74 |
+
title="BioClip Image Classification",
|
75 |
+
description="Upload an image to get a prediction using the BioClip model."
|
76 |
+
)
|
77 |
+
|
78 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
numpy
|
3 |
+
torch
|
4 |
+
Pillow
|
5 |
+
open_clip_torch
|
6 |
+
datasets
|
7 |
+
faiss-cpu
|