|
import streamlit as st |
|
from transformers import pipeline |
|
from transformers.tokenization_utils import TruncationStrategy |
|
|
|
import tokenizers |
|
import pandas as pd |
|
import requests |
|
|
|
st.set_page_config( |
|
page_title='AlephBERT Demo', |
|
page_icon="🥙", |
|
initial_sidebar_state="expanded", |
|
) |
|
|
|
models = { |
|
"AlephBERT-base": { |
|
"name_or_path":"onlplab/alephbert-base", |
|
"description":"AlephBERT base model", |
|
}, |
|
"HeBERT-base-TAU": { |
|
"name_or_path":"avichr/heBERT", |
|
"description":"HeBERT model created by TAU" |
|
}, |
|
"mBERT-base-multilingual-cased": { |
|
"name_or_path":"bert-base-multilingual-cased", |
|
"description":"Multilingual BERT model" |
|
} |
|
} |
|
|
|
@st.cache(show_spinner=False) |
|
def get_json_from_url(url): |
|
return models |
|
return requests.get(url).json() |
|
|
|
|
|
|
|
|
|
|
|
@st.cache(show_spinner=False, hash_funcs={tokenizers.Tokenizer: str}) |
|
def load_model(model): |
|
pipe = pipeline('fill-mask', models[model]['name_or_path']) |
|
def do_tokenize(inputs): |
|
return pipe.tokenizer( |
|
inputs, |
|
add_special_tokens=True, |
|
return_tensors=pipe.framework, |
|
padding=True, |
|
truncation=TruncationStrategy.DO_NOT_TRUNCATE, |
|
) |
|
|
|
def _parse_and_tokenize( |
|
inputs, tokenized=False, **kwargs |
|
): |
|
if not tokenized: |
|
inputs = do_tokenize(inputs) |
|
return inputs |
|
|
|
pipe._parse_and_tokenize = _parse_and_tokenize |
|
|
|
return pipe, do_tokenize |
|
|
|
|
|
|
|
|
|
|
|
st.title('AlephBERT🥙') |
|
st.sidebar.markdown( |
|
"""<div><a target="_blank" href="https://nlp.biu.ac.il/~rtsarfaty/onlp#"><img src="https://nlp.biu.ac.il/~rtsarfaty/static/landing_static/img/onlp_logo.png" style="filter: invert(100%);display: block;margin-left: auto;margin-right: auto; |
|
width: 70%;"></a> |
|
<p style="color:white; font-size:13px; font-family:monospace; text-align: center">AlephBERT Demo • <a href="https://nlp.biu.ac.il/~rtsarfaty/onlp#" style="text-decoration: none;color: white;" target="_blank">ONLP Lab</a></p></div> |
|
<br>""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
mode = 'Models' |
|
|
|
if mode == 'Models': |
|
model = st.sidebar.selectbox( |
|
'Select Model', |
|
list(models.keys())) |
|
masking_level = st.sidebar.selectbox('Masking Level:', ['Tokens', 'SubWords']) |
|
n_res = st.sidebar.number_input( |
|
'Number Of Results', |
|
format='%d', |
|
value=5, |
|
min_value=1, |
|
max_value=100) |
|
|
|
model_tags = model.split('-') |
|
model_tags[0] = 'Model:' + model_tags[0] |
|
|
|
st.markdown(''.join([f'<span style="color:white; font-size:13px; font-family:monospace; background-color: #f63766;margin:3px;padding:8px;border-radius: 5px;">{tag}</span>' for tag in model_tags]),unsafe_allow_html=True) |
|
st.markdown('___') |
|
|
|
unmasker, tokenize = load_model(model) |
|
|
|
input_text = st.text_input('Insert text you want to mask', '') |
|
if input_text: |
|
input_masked = None |
|
tokenized = tokenize(input_text) |
|
ids = tokenized['input_ids'].tolist()[0] |
|
subwords = unmasker.tokenizer.convert_ids_to_tokens(ids) |
|
|
|
if masking_level == 'Tokens': |
|
tokens = str(input_text).split() |
|
mask_idx = st.selectbox('Select token to mask:', [None] + list(range(len(tokens))), format_func=lambda i: tokens[i] if i else '') |
|
if mask_idx is not None: |
|
input_masked = ' '.join(token if i != mask_idx else '[MASK]' for i, token in enumerate(tokens)) |
|
display_input = input_masked |
|
if masking_level == 'SubWords': |
|
tokens = subwords |
|
idx = st.selectbox('Select token to mask:', list(range(0,len(tokens)-1)), format_func=lambda i: tokens[i] if i else '') |
|
tokenized['input_ids'][0][idx] = unmasker.tokenizer.mask_token_id |
|
ids = tokenized['input_ids'].tolist()[0] |
|
display_input = ' '.join(unmasker.tokenizer.convert_ids_to_tokens(ids[1:-1])) |
|
if idx: |
|
input_masked = tokenized |
|
|
|
if input_masked: |
|
st.markdown('#### Input:') |
|
ids = tokenized['input_ids'].tolist()[0] |
|
subwords = unmasker.tokenizer.convert_ids_to_tokens(ids) |
|
st.markdown(f'<p dir="rtl">{display_input}</p>', |
|
unsafe_allow_html=True, |
|
) |
|
st.markdown('#### Outputs:') |
|
with st.spinner('Running model...'): |
|
res = unmasker(input_masked, tokenized=masking_level == 'SubWords', top_k=n_res) |
|
if res: |
|
res = [{'Prediction':r['token_str'], 'Completed Sentence':r['sequence'].replace('[SEP]', '').replace('[CLS]', ''), 'Score':r['score']} for r in res] |
|
res_table = pd.DataFrame(res) |
|
st.table(res_table) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|