import os import gradio as gr from gradio_imageslider import ImageSlider from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms torch.set_float32_matmul_precision(["high", "highest"][0]) birefnet = AutoModelForImageSegmentation.from_pretrained( "briaai/RMBG-2.0", trust_remote_code=True ) birefnet.to("cuda") transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) output_folder = 'output_images' if not os.path.exists(output_folder): os.makedirs(output_folder) def fn(image): im = load_img(image, output_type="pil") im = im.convert("RGB") origin = im.copy() image = process(im) image_path = os.path.join(output_folder, "no_bg_image.png") image.save(image_path) return (image, origin), image_path @spaces.GPU def process(image): image_size = image.size input_images = transform_image(image).unsqueeze(0).to("cuda") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) image.putalpha(mask) return image def process_file(f): name_path = f.rsplit(".",1)[0]+".png" im = load_img(f, output_type="pil") im = im.convert("RGB") transparent = process(im) transparent.save(name_path) return name_path slider1 = ImageSlider(label="RMBG-2.0", type="pil") slider2 = ImageSlider(label="RMBG-2.0", type="pil") image = gr.Image(label="Upload an image") image2 = gr.Image(label="Upload an image",type="filepath") text = gr.Textbox(label="Paste an image URL") png_file = gr.File(label="output png file") chameleon = load_img("giraffe.jpg", output_type="pil") url = "http://farm9.staticflickr.com/8488/8228323072_76eeddfea3_z.jpg" tab1 = gr.Interface( fn, inputs=image, outputs=[slider1, gr.File(label="output png file")], examples=[chameleon], api_name="image" ) tab2 = gr.Interface(fn, inputs=text, outputs=[slider2, gr.File(label="output png file")], examples=[url], api_name="text") tab3 = gr.Interface(process_file, inputs=image2, outputs=png_file, examples=["giraffe.jpg"], api_name="png") demo = gr.TabbedInterface( [tab1, tab2], ["input image", "input url"], title="RMBG-2.0 for background removal
To purchase a commercial license, simply click Here" ) if __name__ == "__main__": demo.launch(show_error=True)