chanelcolgate commited on
Commit
cfea7d1
·
1 Parent(s): 93c6b93

modified: README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -21,7 +21,7 @@ results = metric.compute(references=references, prediction_scores=prediction_sco
21
  ```
22
 
23
  ### Inputs
24
- <!-- - **y_true** (`ndarray` of shape (n_samples,) or (n_samples, n_classes)): True binary labels or binary label indicators.
25
  - **y_score** (`ndarray` of shape (n_samples,) or (n_samples, n_classes)):
26
  Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by :term:`decision_function` on some classifiers).
27
  - **average**: {'micro', 'samples', 'weighted', 'macro'} or None, default='macro`
@@ -41,7 +41,7 @@ Target scores, can either be probability estimates of the positive class, confid
41
  Calculate metrics for each label, and find their average
42
  Will be ignored when ``y_true`` is binary.
43
  - **pos_label** (`int` or `str`, default=1): The label of the positive class. Only applied to binary ``y_true``. For multilabel-indicator ``y_true``, ``pos_label`` is fixed to 1.
44
- - **sample_weight** (`array-like` of shape (n_samples,), default=None): Sample weights. -->
45
 
46
  ### Output Values
47
 
 
21
  ```
22
 
23
  ### Inputs
24
+ - **y_true** (`ndarray` of shape (n_samples,) or (n_samples, n_classes)): True binary labels or binary label indicators.
25
  - **y_score** (`ndarray` of shape (n_samples,) or (n_samples, n_classes)):
26
  Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by :term:`decision_function` on some classifiers).
27
  - **average**: {'micro', 'samples', 'weighted', 'macro'} or None, default='macro`
 
41
  Calculate metrics for each label, and find their average
42
  Will be ignored when ``y_true`` is binary.
43
  - **pos_label** (`int` or `str`, default=1): The label of the positive class. Only applied to binary ``y_true``. For multilabel-indicator ``y_true``, ``pos_label`` is fixed to 1.
44
+ - **sample_weight** (`array-like` of shape (n_samples,), default=None): Sample weights.
45
 
46
  ### Output Values
47