chanelcolgate commited on
Commit
ded291e
·
1 Parent(s): 611243d

modified: average_precision.py

Browse files
Files changed (2) hide show
  1. README.md +28 -9
  2. average_precision.py +27 -4
README.md CHANGED
@@ -3,7 +3,7 @@ title: Average Precision
3
  tags:
4
  - evaluate
5
  - metric
6
- description: "TODO: add a description here"
7
  sdk: gradio
8
  sdk_version: 3.19.1
9
  app_file: app.py
@@ -12,19 +12,38 @@ pinned: false
12
 
13
  # Metric Card for Average Precision
14
 
15
- ***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
16
-
17
- ## Metric Description
18
- *Give a brief overview of this metric, including what task(s) it is usually used for, if any.*
19
-
20
  ## How to Use
21
- *Give general statement of how to use the metric*
 
22
 
23
- *Provide simplest possible example for using the metric*
 
 
24
 
25
  ### Inputs
26
- *List all input arguments in the format below*
27
  - **input_field** *(type): Definition of input, with explanation if necessary. State any default value(s).*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  ### Output Values
30
 
 
3
  tags:
4
  - evaluate
5
  - metric
6
+ description: "Average precision score."
7
  sdk: gradio
8
  sdk_version: 3.19.1
9
  app_file: app.py
 
12
 
13
  # Metric Card for Average Precision
14
 
 
 
 
 
 
15
  ## How to Use
16
+ ```python
17
+ import evaluate
18
 
19
+ metric = evaluate.load("chanelcolgate/average_precision")
20
+ results = metric.compute(references=references, prediction_scores=prediction_scores)
21
+ ```
22
 
23
  ### Inputs
 
24
  - **input_field** *(type): Definition of input, with explanation if necessary. State any default value(s).*
25
+ - **y_true** *(`ndarray` of shape (n_samples,) or (n_samples, n_classes)): True binary labels or binary label indicators.
26
+ - **y_score** *(`ndarray` of shape (n_samples,) or (n_samples, n_classes)):
27
+ Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by :term:`decision_function` on some classifiers).
28
+ - **average**: {'micro', 'samples', 'weighted', 'macro'} or None, default='macro`
29
+
30
+ If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data:
31
+
32
+ ``'micro'``:
33
+ Calculate metrics globally by considering each element of the label indicator matrix as a label.
34
+
35
+ ``'macro'``:
36
+ Calculate metrics for each label, and find their unweighted mean This does not take label imbalance into account.
37
+
38
+ ``'weighted'``:
39
+ Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label).
40
+
41
+ ``'samples'``:
42
+ Calculate metrics for each label, and find their average
43
+ Will be ignored when ``y_true`` is binary.
44
+ - **pos_label** *(`int` or `str`, default=1): The label of the positive class. Only applied to binary ``y_true``. For multilabel-indicator ``y_true``, ``pos_label`` is fixed to 1.
45
+ - **sample_weight** *(`array-like` of shape (n_samples,), default=None): Sample weights.
46
+
47
 
48
  ### Output Values
49
 
average_precision.py CHANGED
@@ -56,10 +56,33 @@ Note: this implementation is restricted to the binary classification task or
56
  multilabel classification task.
57
  Read more in the :ref:`User Guide <precision_recall_f_measure_metrics`.
58
  Args:
59
- predictions: list of predictions to score. Each predictions
60
- should be a string with tokens separated by spaces.
61
- references: list of reference for each prediction. Each
62
- reference should be a string with tokens separated by spaces.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  Returns:
64
  accuracy: description of the first score,
65
  another_score: description of the second score,
 
56
  multilabel classification task.
57
  Read more in the :ref:`User Guide <precision_recall_f_measure_metrics`.
58
  Args:
59
+ y_true: ndarray of shape (n_samples,) or (n_samples, n_classes)
60
+ True binary labels or binary label indicators.
61
+ y_score: ndarray of shape (n_samples,) or (n_samples, n_classes)
62
+ Target scores, can either be probability estimates of the positive
63
+ class, confidence values, or non-thresholded measure of decisions
64
+ (as returned by :term:`decision_function` on some classifiers).
65
+ average: {'micro', 'samples', 'weighted', 'macro'} or None, \
66
+ default='macro'
67
+ If ``None``, the scores for each class are retruned. Otherwise,
68
+ this determines the type of averaging performed on the data:
69
+ ``'micro'``:
70
+ Calculate metrics globally be considering each element of the label
71
+ indicator matrix as a label.
72
+ ``'macro'``:
73
+ Calculate metrics for each label, and find their unweighted
74
+ mean. This does not take label imbalance into account.
75
+ ``'weighted'``:
76
+ Calculate metrics for each label, and find their average, weighted
77
+ by support (the number of true instances for each label).
78
+ ``'samples'``:
79
+ Calculate metrics for each instance, and find their average.
80
+ Will be ignored when ``y_true`` is binary.
81
+ pos_label: int or str, default=1
82
+ The label of the positive class. Only applied to binary ``y_true``.
83
+ For multilabel-indicator ``y_true``, ``pos_label`` is fixed to 1.
84
+ sample_weight: array_like of shape (n_samples,), default=None
85
+ Sample weights.
86
  Returns:
87
  accuracy: description of the first score,
88
  another_score: description of the second score,