text2midi / app.py
keshavbhandari's picture
Remove unused code and CSS styling
c183bed
import gradio as gr
import spaces
import librosa
import soundfile as sf
import wavio
import os
import subprocess
import pickle
import torch
import torch.nn as nn
from transformers import T5Tokenizer
from transformer_model import Transformer
from miditok import REMI, TokenizerConfig
from pathlib import Path
from huggingface_hub import hf_hub_download
repo_id = "amaai-lab/text2midi"
# Download the model.bin file
model_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin")
# Download the vocab_remi.pkl file
tokenizer_path = hf_hub_download(repo_id=repo_id, filename="vocab_remi.pkl")
# Download the soundfont file
soundfont_path = hf_hub_download(repo_id=repo_id, filename="soundfont.sf2")
def save_wav(filepath):
# Extract the directory and the stem (filename without extension)
directory = os.path.dirname(filepath)
stem = os.path.splitext(os.path.basename(filepath))[0]
# Construct the full paths for MIDI and WAV files
midi_filepath = os.path.join(directory, f"{stem}.mid")
wav_filepath = os.path.join(directory, f"{stem}.wav")
# Run the fluidsynth command to convert MIDI to WAV
# f"fluidsynth -r 16000 soundfont.sf2 -g 1.0 --quiet --no-shell {midi_filepath} -T wav -F {wav_filepath} > /dev/null",
process = subprocess.Popen(
f"fluidsynth -r 16000 {soundfont_path} -g 1.0 --quiet --no-shell {midi_filepath} -T wav -F {wav_filepath} > /dev/null",
shell=True
)
process.wait()
return wav_filepath
# def post_processing(input_midi_path: str, output_midi_path: str):
# # Define tokenizer configuration
# config = TokenizerConfig(
# pitch_range=(21, 109),
# beat_res={(0, 4): 8, (4, 12): 4},
# num_velocities=32,
# special_tokens=["PAD", "BOS", "EOS", "MASK"],
# use_chords=True,
# use_rests=False,
# use_tempos=True,
# use_time_signatures=False,
# use_programs=True
# )
# # Initialize tokenizer
# tokenizer = REMI(config)
# # Tokenize the input MIDI
# tokens = tokenizer(Path(input_midi_path))
# # Remove notes in the first bar
# modified_tokens = []
# bar_count = 0
# bars_after = 2
# for token in tokens.tokens:
# if token == "Bar_None":
# bar_count += 1
# if bar_count > bars_after:
# modified_tokens.append(token)
# # Decode tokens back into MIDI
# modified_midi = tokenizer(modified_tokens)
# modified_midi.dump_midi(Path(output_midi_path))
def generate_midi(caption, temperature=0.9, max_len=500):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
artifact_folder = 'artifacts'
# tokenizer_filepath = os.path.join(artifact_folder, "vocab_remi.pkl")
# Load the tokenizer dictionary
with open(tokenizer_path, "rb") as f:
r_tokenizer = pickle.load(f)
# Get the vocab size
vocab_size = len(r_tokenizer)
print("Vocab size: ", vocab_size)
model = Transformer(vocab_size, 768, 8, 2048, 18, 1024, False, 8, device=device)
# model_path = os.path.join("amaai-lab/text2midi", "pytorch_model.bin")
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
inputs = tokenizer(caption, return_tensors='pt', padding=True, truncation=True)
input_ids = nn.utils.rnn.pad_sequence(inputs.input_ids, batch_first=True, padding_value=0)
input_ids = input_ids.to(device)
attention_mask =nn.utils.rnn.pad_sequence(inputs.attention_mask, batch_first=True, padding_value=0)
attention_mask = attention_mask.to(device)
output = model.generate(input_ids, attention_mask, max_len=max_len,temperature = temperature)
output_list = output[0].tolist()
generated_midi = r_tokenizer.decode(output_list)
generated_midi.dump_midi("output.mid")
# post_processing("output.mid", "output.mid")
@spaces.GPU(duration=120)
def gradio_generate(prompt, temperature, max_length):
# Generate midi
generate_midi(prompt, temperature, max_length)
# Convert midi to wav
midi_filename = "output.mid"
save_wav(midi_filename)
wav_filename = midi_filename.replace(".mid", ".wav")
# Read the generated WAV file
output_wave, samplerate = sf.read(wav_filename, dtype='float32')
temp_wav_filename = "temp.wav"
wavio.write(temp_wav_filename, output_wave, rate=16000, sampwidth=2)
return temp_wav_filename, midi_filename # Return both WAV and MIDI file paths
title="Text2midi: Generating Symbolic Music from Captions"
description_text = """
<p><a href="https://huggingface.co/spaces/amaai-lab/text2midi/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
Generate midi music using Text2midi by providing a text prompt.
<br/><br/> This is the demo for Text2midi for controllable text to midi generation: <a href="https://arxiv.org/abs/tbd">Read our paper.</a>
<p/>
"""
#description_text = ""
# Gradio input and output components
input_text = gr.Textbox(lines=2, label="Prompt")
output_audio = gr.Audio(label="Generated Music", type="filepath")
output_midi = gr.File(label="Download MIDI File")
temperature = gr.Slider(minimum=0.9, maximum=1.1, value=1.0, step=0.01, label="Temperature", interactive=True)
max_length = gr.Number(value=1500, label="Max Length", minimum=500, maximum=2000, step=100)
# CSS styling for the Duplicate button
css = '''
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
'''
# Gradio interface
gr_interface = gr.Interface(
fn=gradio_generate,
inputs=[input_text, temperature, max_length],
outputs=[output_audio, output_midi],
description=description_text,
allow_flagging=False,
examples=[
["A haunting electronic ambient piece that evokes a sense of darkness and space, perfect for a film soundtrack. The string ensemble, trumpet, piano, timpani, and synth pad weave together to create a meditative atmosphere. Set in F minor with a 4/4 time signature, the song progresses at an Andante tempo, with the chords F, Fdim, and F/C recurring throughout."],
["A slow and emotional classical piece, likely used in a film soundtrack, featuring a church organ as the sole instrument. Written in the key of Eb major with a 3/4 time signature, it evokes a sense of drama and romance. The chord progression of Bb7, Eb, and Ab contributes to the relaxing atmosphere throughout the song."],
["An energetic and melodic electronic trance track with a space and retro vibe, featuring drums, distortion guitar, flute, synth bass, and slap bass. Set in A minor with a fast tempo of 138 BPM, the song maintains a 4/4 time signature throughout its duration."],
["This short electronic song in C minor features a brass section, string ensemble, tenor saxophone, clean electric guitar, and slap bass, creating a melodic and slightly dark atmosphere. With a tempo of 124 BPM (Allegro) and a 4/4 time signature, the track incorporates a chord progression of C7/E, Eb6, and Bbm6, adding a touch of corporate and motivational vibes to the overall composition."],
["An energetic and melodic electronic trance track with a space and retro vibe, featuring drums, distortion guitar, flute, synth bass, and slap bass. Set in A minor with a fast tempo of 138 BPM, the song maintains a 4/4 time signature throughout its duration."],
["A short but energetic rock fragment in C minor, featuring overdriven guitars, electric bass, and drums, with a vivacious tempo of 155 BPM and a 4/4 time signature, evoking a blend of dark and melodic tones."],
],
cache_examples="lazy",
css=".example-caption { text-align: left; }"
)
with gr.Blocks(css=css) as demo:
title=gr.HTML(f"<h1><center>{title}</center></h1>")
dupe = gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr_interface.render()
# Launch Gradio app.
demo.queue().launch()